

Table 11.1	
TABLE 11.1 The enzymatic reactions of glycolysis	
Reaction	Enzyme
Glucose+ ATP → Glucose6-phosphate+ ADP + H [®] Glucose6-phosphate → Fructose 6-phosphate Fructose6-phosphate ATP → Fructose1,6-biphosphate+ ADP + H [®] Fructose1,6-biphosphate → Dlhydroxyacetone phosphate+ Glyceraldehyde3-phosphate Glyceraldehyde3-phosphate → ADP + H [®] J.3-Bisphosphoglycerate+ NAD [®] + P → 1.3-Bisphosphoglycerate+ NADH + H [®] J.3-Bisphosphoglycerate+ ADP ← 3-Phosphoglycerate 2-Phosphoglycerate → 2-Phosphoglycerate 4. 2-Phosphoglycerate + ADP 4. 2-Phosphoglycerate + ADP 4. 2-Phosphoglycerate + ADP 4. 3-Phosphoglycerate + ADP 4. 3-Bisphosphoglycerate + ADP 4. 3-Phosphoglycerate + ADP 4. 3-Bisphosphoglycerate 4. 3-Bisphosphoglycerate + ADP 4. 3-Bisphosphoglycerate + ADP 4. 3-Bisphosphoglycerate 4. 3-Bisp	Hetokinase.glucokinase Glucose-6-phosphateisomerase Phosphofructokinase-1 Aldolase Triose phosphateisomerase Glyceraldehvde 3-phosphatelehodrogenase Phosphoglycerate kinase Phosphoglycerate mutase Enolase Pyrav
Prentice Hall c2002 Chapter 11	6

- <u>Hexose stage</u>: **2 ATP** are <u>consumed</u> per glucose
- <u>Triose stage</u>: <u>4 ATP</u> are <u>produced</u> per glucose Net: 2 ATP produced per glucose

• Glycolysis (next 4 slides) • Iomerization• Iomerization

Fig 11.2

Prentice Hall c2002

Chapter 11

Isozymes of hexokinase Isozymes - <u>multiple forms</u> of hexokinase occur in mammalian tissues and yeast Hexokinases I, II, III are active at normal glucose concentrations (K_m values ~10⁻⁶ to 10⁻⁴M) Hexokinase IV (**Glucokinase**, K_m ~10⁻²M) is active at <u>higher</u> glucose levels, allows the liver to respond to large increases in blood glucose

Prentice Hall c2002

Chapter 11

Chapter 11

11.4 Free-Energy Changes in Glycolysis Actual free-energy changes (ΔG) large only for: #1 (hexokinase) #3 (phosphofructokinase) #10 (pyruvate kinase) These steps are metabolically irreversible, and these enzymes are regulated ΔG for all other steps are close to zero (they are near-equilibrium in cells)

E. The Pasteur Effect

- Under <u>anaerobic conditions</u> the conversion of glucose to pyruvate is <u>much higher</u> than under aerobic conditions (yeast cells produce more ethanol and muscle cells accumulate lactate)
- The Pasteur Effect is the <u>slowing of glycolysis</u> in the presence of oxygen
- <u>More ATP</u> is produced under <u>aerobic</u> conditions than under anaerobic conditions, therefore <u>less</u> <u>glucose</u> is consumed aerobically

Prentice Hall c2002

Chapter 11

73

11.6 Other Sugars Can Enter Glycolysis

- Glucose is the main metabolic fuel in most organisms
- · Other sugars convert to glycolytic intermediates
- <u>Fructose</u> and <u>sucrose</u> (contains fructose) are major sweeteners in many foods and beverages
- · Galactose from milk lactose (a disaccharide)

Prentice Hall c2002

· Mannose from dietary polysaccharides, glycoproteins

Chapter 11

