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Chapter 11  - Glycolysis

• For centuries, bakeries 
and breweries have 
exploited the 
conversion of glucose 
to ethanol and CO2 by
glycolysis in yeast
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11.1 Glycolysis Is a Ubiquitous Pathway

Converts:   1 glucose 2 pyruvate

• Pyruvate can be further metabolized to: 
(1)  Lactate or ethanol (anaerobic) 
(2)  Acetyl CoA (aerobic) 

• Acetyl CoA is further oxidized to CO2 and 
H2O via the citric acid cycle

• Much more ATP is generated from the citric 
acid cycle than from glycolysis 
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Fig 11.1

• Catabolism of glucose via
glycolysis and the citric 
acid cycle 

(continued next slide)
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Fig 11.1 (continued)
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Net reaction of glycolysis

• Two molecules of ATP are produced

• Two molecules of NAD+ are reduced to NADH

Glucose + 2 ADP + 2 NAD+ + 2 Pi

2 Pyruvate + 2 ATP + 2 NADH + 2 H+ + 2 H2O
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Table 11.1
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Glycolysis (10 reactions) can be 
divided into two stages

• Hexose stage:  2 ATP are consumed per glucose

• Triose stage:  4 ATP are produced per glucose

Net:  2 ATP produced per glucose
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Fig 11.2

• Glycolysis
(next 4 
slides)
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Phosphofructokinase-1
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11.2 Glycolysis Has 10 
Enzyme-Catalyzed Steps

• Each chemical reaction prepares a substrate for 
the next step in the process

• A hexose is cleaved to two trioses

• Interconversion of the trioses allows both to be 
further metabolized via glycolytic enzymes

• ATP is both consumed and produced in glycolysis
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1. Hexokinase

• Transfers the γ-phosphoryl of ATP to glucose C-6 
oxygen to generate glucose 6-phosphate (G6P) 

• Mechanism:  attack of C-6 hydroxyl oxygen of 
glucose on the γ-phosphorous of MgATP2-

displacing MgADP-

• Four kinases in glycolysis: steps 1,3,7, and 10

• All four kinases require Mg2+ and have a similar 
mechanism 
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Fig 11.3 Hexokinase reaction
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Properties of hexokinases

• Broad substrate specificity - hexokinases can
phosphorylate glucose, mannose and fructose

• Yeast hexokinase undergoes an induced-fit
conformational change when glucose binds 

• Conformational change helps prevent hydrolysis 
of ATP to ADP and Pi (Fig 6.13)
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Isozymes of hexokinase

• Isozymes - multiple forms of hexokinase occur 
in mammalian tissues and yeast

• Hexokinases I, II, III are active at normal glucose 
concentrations (Km values ~10-6 to 10-4M)

• Hexokinase IV (Glucokinase, Km ~10-2M) is 
active at higher glucose levels, allows the liver to 
respond to large increases in blood glucose 
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2.  Glucose 6-Phosphate Isomerase

• Converts glucose 6-phosphate (G6P) (an
aldose) to fructose 6-phosphate (F6P) (a ketose)

• Enzyme preferentially binds the α-anomer of G6P 
(converts to open chain form in the active site) 

• Enzyme is highly stereospecific for G6P and F6P

• Isomerase reaction is near-equilibrium in cells
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Fig 11.4  Conversion of G6P to F6P
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3. Phosphofructokinase-1  (PFK-1)

• Catalyzes transfer of a phosphoryl group from 
ATP to the C-1 hydroxyl group of F6P to form 
fructose 1,6-bisphosphate (F1,6BP)

• PFK-1 is metabolically irreversible and a critical 
regulatory point for glycolysis in most cells 
(PFK-1 is the first committed step of glycolysis)

• A second phosphofructokinase (PFK-2) 
synthesizes fructose 2,6-bisphosphate (F2,6BP)
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PFK-1 Reaction
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4. Aldolase

• Aldolase cleaves the hexose F1,6BP into two
triose phosphates: glyceraldehyde 3-
phosphate (GAP) and dihydroxyacetone
phosphate (DHAP)

• Reaction is near-equilibrium, not a control point

• Mechanism is common for cleaving C-C bonds in 
biological systems (and C-C bond formation in 
the reverse direction)
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Aldolase Reaction
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Fig 11.5  Mechanism of aldolases

(continued next slide) 
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Fig 11.5 (continued)
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5. Triose Phosphate Isomerase (TPI)

• Conversion of DHAP into glyceraldehyde 3-
phosphate (GAP) 

• Reaction is very fast (diffusion controlled), and 
only the D-isomer of GAP is formed

• Radioisotopic tracer studies show:
One GAP molecule: C1,2,3 from Glucose C4,5,6
Second GAP: C1,2,3 from Glucose C3,2,1
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Reaction of Triose phosphate isomerase
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Fig 11.6  Fate of carbon atoms from
hexose stage to triose stage
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6. Glyceraldehyde 3-Phosphate
Dehydrogenase (GAPDH)

• Conversion of GAP to 
1,3-bisphosphoglycerate (1,3BPG)

• Molecule of NAD+ is reduced to NADH 

• Oxidation of the aldehyde group of GAP 
proceeds with large negative free-energy change
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Conservation of oxidative energy

• Energy from oxidation of GAP aldehyde is 
conserved in acid-anhydride linkage of 1,3BPG

• Next step of glycolysis uses the high-energy 
phosphate of 1,3BPG to form ATP from ADP

• Mechanism of GAPDH shows how an energy-
rich compound forms in an oxidation reaction  
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Reaction of GAPDH:  GAP  converted to 1,3BPG
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Fig 11.7

• Mechanism of 
GAPDH (3 slides) 
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Fig 11.7 (continued)

(2) (4)
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Fig 11.7 (continued) 
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Box 11.2  Arsenate (AsO4
3-) poisoning

• Arsenate can replace Pi as a substrate for G3PDH

• Arseno analog which forms is unstable
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7. Phosphoglycerate Kinase (PGK)

• Transfer of phosphoryl group from the energy-
rich mixed anhydride 1,3BPG to ADP yields 
ATP and 3-phosphoglycerate (3PG)

• Substrate-level phosphorylation - Steps 6 
and 7 couple oxidation of an aldehyde to a 
carboxylic acid with the phosphorylation of 
ADP to ATP
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Phosphoglycerate kinase reaction
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8. Phosphoglycerate Mutase

• Catalyzes transfer of a phosphoryl group from 
one part of a substrate molecule to another

• Reaction occurs without input of ATP energy

• Mechanism requires 2 phosphoryl-group 
transfer steps

• Enzymes from animal muscle and yeast have a 
different mechanism than does plant enzyme 
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Phosphoglycerate mutase reaction
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Fig 11.8 Phosphoglycerate mutase
mechanism: animals and yeast

(continued)
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Fig 11.8 (continued)

(1)



11

Prentice Hall c2002 Chapter 11 41

Fig 11.8 (continued) 
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9. Enolase:  2PG to PEP

• 3-Phosphoglycerate (3PG) is dehydrated to
phosphoenolpyruvate (PEP) 

• Elimination of water from C-2 and C-3 yields the
enol-phosphate PEP

• PEP has a very high phosphoryl group transfer 
potential because it exists in its unstable enol form 
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Enolase reaction
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10. Pyruvate Kinase (PK)

• Catalyzes a substrate-level phosphorylation 

• Metabolically irreversible reaction

• Regulation both by allosteric modulators and by 
covalent modification

• Pyruvate kinase gene can be regulated by 
various hormones and nutrients

PEP + ADP   Pyruvate + ATP 
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Fig 11.9

• Pyruvate kinase
reaction
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11.3 The Fate of Pyruvate

1. Aerobic conditions: oxidized to acetyl CoA
which enters the citric acid cycle for further 
oxidation

2.  Anaerobic conditions (microorganisms): 
conversion to ethanol

3.  Anaerobic conditions (muscles, red blood
cells): conversion to lactate
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Fig 11.10

• Three major 
fates of pyruvate
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A.  Metabolism of Pyruvate to Ethanol
(yeast - anaerobic)

• Two reactions required:  

(1)  Pyruvate carboxylase

(2)  Alcohol dehydrogenase 

Pyruvate Acetaldehyde Ethanol(1) (2)
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Fig 11.11

• Anaerobic 
conversion of
pyruvate to ethanol 
(yeast)
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Fig 11.11 
(cont)
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B.  Reduction of Pyruvate to Lactate 
(muscles - anaerobic)

• Muscles lack pyruvate dehydrogenase and 
cannot produce ethanol from pyruvate

• Muscle lactate dehydrogenase converts
pyruvate to lactate

• This reaction regenerates NAD+ for use by 
GAPDH in glycolysis
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Recycling of lactate

• Lactate formed in skeletal muscles during 
exercise is transported to the liver 

• Liver lactate dehydrogenase can reconvert 
lactate to pyruvate

• Lactic acidosis can result from insufficient 
oxygen (an increase in lactic acid and decrease 
in blood pH)
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Reduction of pyruvate to lactate
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Overall reactions for glucose 
degradation to lactate

• Two ATP per molecule glucose consumed

• No oxygen is required

Glucose + 2 Pi
2- + 2 ADP3-

2 Lactate- + 2 ATP4- + 2 H2O 
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11.4 Free-Energy Changes in Glycolysis

• Actual free-energy changes (∆G) large only for:
#1 (hexokinase)
#3 (phosphofructokinase)
#10 (pyruvate kinase)

• These steps are metabolically irreversible, and 
these enzymes are regulated

• ∆G for all other steps are close to zero (they 
are near-equilibrium in cells) 
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Fig 11.12  Cumulative standard and actual free 
energy changes for the reactions of glycolysis
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11.5 Regulation of Glycolysis

1.  When ATP is needed, glycolysis is activated

• AMP and fructose 2,6-bisphosphate (F2,6BP) relieve 
the inhibition of PFK-1 by ATP

2.  When ATP levels are sufficient, glycolysis activity 
decreases

• PFK-1 is inhibited by ATP and citrate

• Hexokinase inhibited by excess glucose 6-phosphate
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Fig 11.13  Metabolic regulation of glycolysis

(continued)
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Fig 11.13 
(continued)
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A.  Regulation of Hexose Transporters

• Glucose enters mammalian cells by passive 
transport down a concentration gradient from blood 
to cells

• GLUT is a family of six passive hexose transporters

• Glucose uptake into skeletal and heart muscle and
adipocytes by GLUT 4 is stimulated by insulin

• Other GLUT transporters mediate glucose transport 
in and out of cells in the absence of insulin
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Fig 11.14  Regulation of glucose 
transport by insulin
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B.  Regulation of Hexokinase

• Hexokinase reaction is metabolically irreversible

• G6P (product) levels increase when glycolysis is 
inhibited at sites further along in the pathway

• G6P inhibits hexokinase isozymes I, II and III

• Glucokinase forms G6P in the liver (for glycogen 
synthesis) when glucose is abundant (activity is 
modulated by fructose phosphates and a 
regulatory protein) 
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Fig 11.15  Effects of a regulatory protein 
on glucokinase kinetics

• Addition of a 
regulatory protein 
raises apparent Km
for glucose (inhibits
glucokinase) 
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Box 11.3  Glucose 6-Phosphate Has a 
Pivotal Metabolic Role in Liver
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C.  Regulation of Phosphofructokinase-1

• ATP is a substrate and an allosteric inhibitor of PFK-1

• AMP allosterically activates PFK-1 by relieving the 
ATP inhibition (ADP is also an activator in 
mammalian systems)

• Changes in AMP and ADP concentrations can control 
the flux through PFK-1

• Elevated levels of citrate (indicate ample substrates 
for citric acid cycle) also inhibit PFK-1
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Fig 11.16  Regulation of PFK-1 by ATP and AMP

• AMP relieves ATP 
inhibition of PFK-1
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Regulation of PFK-1 by Fructose 2,6-
bisphosphate (F2,6BP)

• F2,6BP is formed from F6P by the enzyme 
phosphofructokinase-2 (PFK-2)

• Fig 11.17 β-D-Fructose 2,6-bisphosphate
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Formation and hydrolysis of F2,6BP
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Fig. 11.18

• Effect of
glucagon
on liver
glycolysis
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D.  Regulation of Pyruvate Kinase (PK)

• Four PK isozymes exist in mammalian tissues

• PK is allosterically activated by F1,6BP,
inhibited by ATP

• Glucagon stimulates protein kinase A which
phosphorylates PK converting it to a less active
form (liver and intestinal cells)  
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Fig 11.19  Initial velocity curves of
pyruvate kinase
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Fig 11.20 Pyruvate kinase with F1,6BP

• Activator F1,6BP (red)

• Active site is in large 
central domain 
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E.  The Pasteur Effect

• Under anaerobic conditions the conversion of 
glucose to pyruvate is much higher than under 
aerobic conditions (yeast cells produce more 
ethanol and muscle cells accumulate lactate)

• The Pasteur Effect is the slowing of glycolysis in 
the presence of oxygen

• More ATP is produced under aerobic conditions 
than under anaerobic conditions, therefore less
glucose is consumed aerobically 
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11.6 Other Sugars Can Enter Glycolysis

• Glucose is the main metabolic fuel in most organisms

• Other sugars convert to glycolytic intermediates

• Fructose and sucrose (contains fructose) are major 
sweeteners in many foods and beverages

• Galactose from milk lactose (a disaccharide) 

• Mannose from dietary polysaccharides, glycoproteins
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A.  Fructose Is Converted to
Glyceraldehyde 3-Phosphate

Fig 11.21 

(continued)
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Fig 11.21 (continued)
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B. Galactose is Converted to 
Glucose 1-Phosphate

Fig 11.22 
(continued 
next slide)

Prentice Hall c2002 Chapter 11 78

Fig 11.22 (continued)

Prentice Hall c2002 Chapter 11 79

C.  Mannose is Converted to 
Fructose 6-Phosphate
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11.7 Formation of 2,3-Bisphosphoglycerate
in Red Blood Cells

• 2,3-Bisphosphoglycerate (2,3BPG) allosterically
regulates hemoglobin oxygenation (red blood cells)

• Erythrocytes contain bisphosphoglycerate mutase
which forms 2,3BPG from 1,3BPG

• In red blood cells about 20% of the glycolytic flux is 
diverted for the production of the important oxygen 
regulator 2,3BPG
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Fig 11.24

• Formation 
of 2,3BPG 
in red blood 
cells


