Chemistry 112

The Name Game

- 1. What is your name?
- 2. Where are you from?
- 3. What is your major?
- 4. What are your future plans?
- 5. What is your favorite movie?
- 6. What is the most exciting thing you have ever done?
- 7. What is something about you that people usually are surprised to learn?

A *solution* is a homogenous mixture of 2 or more substances

The **solute** is(are) the substance(s) present in the smaller amount(s)

The *solvent* is the substance present in the larger amount

Component 1	Component 2	State of Resulting Solution	Examples
Gas	Gas	Gas	Air
Gas	Liquid	Liquid	Soda water (CO ₂ in water)
Gas	Solid	Solid	H ₂ gas in palladium
Liquid	Liquid	Liquid	Ethanol in water
Solid	Liquid	Liquid	NaCl in water
Solid	Solid	Solid	Brass (Cu/Zn), solder (Sn/Pb)

12.2

Intermolecular Forces

- 1. London Forces (Dispersion Forces)
- 2. Dipole-Dipole Interactions
- 3. Ion-Dipole Interactions (Salt dissolving in solution)
- 4. Hydrogen Bonding

Fig 10-16B Pg 444

Crystals of benzoic acid contain pairs of molecules held together head to head by hydrogen bonds. These pairs then stack in planes which are held together by dispersion forces.

Molarity Problem

How many grams of KBr are required to make 250 mL Of a 0.40 M solution?

1. Determine the amount of moles in solution

 $\frac{0.4 \text{ moles KBr}}{1 \text{ L}} \qquad \text{X} \quad \begin{array}{l} 0.250 \text{ L} \\ = & 0.1 \text{ moles KBr} \end{array}$

2. Determine the mass of 0.1 moles of KBr

0.1 moles KBr X <u>119 grams</u> = 11.9 g KBr 1 mole KBr

Test Your Skill

- 1. What is weight percentage of a 0.15 m NaI solution?
- 2. What is molality of a 5% solution of C_2H_5OH ?
- 3. What is the mole fraction of 0.15 m $C_{12}H_{22}O_{11}$?

Dilutions

(Stock Conc) (volume) = (Diluted concentration)(volume)

$$\mathbf{M}_1 * \mathbf{V}_1 = \mathbf{M}_2 * \mathbf{V}_2$$

This equation is also used at the equivalence point in a titration

Dilution Problem 1

If 32 mL stock solution of 6.5 M $\rm H_2SO_4$ is diluted to a volume of 500 mL What would be the resulting concentration?

$$\mathbf{M}_1 * \mathbf{V}_1 = \mathbf{M}_2 * \mathbf{V}_2$$

$$(6.5M) * (32 mL) = M_2 * (500.0 mL)$$

$$M_2 = \frac{6.5 \text{ M} * 32 \text{ mL}}{500 \text{ mL}}$$

 $M_2 = 0.42 M$

Dilution Problem 2

How much of a 3.0 M solution of $\rm HNO_3$ and how much water is needed to Make 250 mL of a 0.5 M $\rm HNO_3$ solution?

 $\mathbf{M}_1^*\mathbf{V}_1 = \mathbf{M}_2^*\mathbf{V}_2$

 $(3M) * V_1 = (0.5 \text{ M}) * (250 \text{ mL})$ $V_1 = \frac{0.5 \text{ M} * 250 \text{ mL}}{3 \text{ M}}$

V1 = 42 mL

42 mL of 3.0 M HNO3 and 208 mL of water is needed

Colligative Properties

A colligative property is a property that change depending upon Relative numbers of solute and solvent particles.

There are four that you need to know:

Vapor pressure Boiling point Freezing point Osmotic pressure

	Normal Freezing	K,	Normal Boiling	Kb
Solvent	Point (°C)*	(°C/m)	Point (°C)*	(°C/m
Water	0	1.86	100	0.52
Benzene	5.5	5.12	80.1	2.53
Ethanol	-117.3	1.99	78.4	1.22
Acetic acid	16.6	3.90	117.9	2.93
Cyclohexane	6.6	20.0	80.7	2.79
Measured at 1 atm	L.			

Osmotic Pressure (π) Osmosis is the selective passage of solvent molecules through a porous membrane from a dilute solution to a more concentrated one. A semipermeable membrane allows the passage of solvent molecules but blocks the passage of solute molecules. Osmotic pressure (π) is the pressure required to stop osmosis. Semipermeable membrane pressure required to stop osmosis. Semipermeable membrane membrane group of the pressure for the pressu

Solvent

molecule

12.6

dilute

concentrated

Colligative Propertie	es of Electrolyte Solutions
0.1 <i>m</i> NaCl solution \longrightarrow	0.1 <i>m</i> Na ⁺ ions & 0.1 <i>m</i> Cl ⁻ ions
Colligative properties are pr number of solute particles in the solute particles.	operties that depend only on the solution and not on the nature of
0.1 <i>m</i> NaCl solution \longrightarrow	0.2 <i>m</i> ions in solution
van't Hoff factor (i) = actual number	number of particles in soln after dissociation er of formula units initially dissolved in soln
	<u>i should be</u>
nonelectrolyte	s 1
NaCl	2

A *colloid* is a dispersion of particles of one substance throughout a dispersing medium of another substance.

- Colloid versus solution
- collodial particles are much larger than solute molecules
- collodial suspension is not as homogeneous as a solution

Dispersing Medium	Dispersed Phase	Name	Example
Gas	Liquid	Aerosol	Fog, mist
Gas	Solid	Aerosol	Smoke
Liquid	Gas	Foam	Whipped cream
Liquid	Liquid	Emulsion	Mayonnaise
Liquid	Solid	Sol	Milk of magnesia
Solid	Gas	Foam	Plastic foams
Solid	Liquid	Gel	Jelly, butter
Solid	Solid	Solid sol	Certain alloys (steel), gemstones (glass with dispersed metal)

Which of the following salt solutions will have the highest vapor pressure?

A) 0.1M sodium acetateB) 0.1M calcium phosphateC) 0.1M potassium carbonate

A) 0.1 M NaCH₃COO