

## The Name Game

1. What is your name?
2. Where are you from?
3. What is your major?
4. What are your future plans?
5. What is your favorite movie?
6. What is the most exciting thing you have ever done?
7. What is something about you that people usually are surprised to learn?



Fractional crystallization is the separation of a mixture of substances into pure components on the basis of their differing solubilities.


Suppose you have 90 g KNO contaminated with 10 g NaCl .

Fractional crystallization:

1. Dissolve sample in 100 mL of water at $60^{\circ} \mathrm{C}$
2. Cool solution to $0^{\circ} \mathrm{C}$
3. All NaCl will stay in solution (s $=34.2 \mathrm{~g} / 100 \mathrm{~g}$ )
4. 78 g of PURE $\mathrm{KNO}_{3}$ will precipitate ( $\mathrm{s}=12 \mathrm{~g} / 100 \mathrm{~g}$ ). 90 $\mathrm{g}-12 \mathrm{~g}=78 \mathrm{~g}$

Temperature $(\mathrm{CO})$


## Pressure and Solubility of Gases

The solubility of a gas in a liquid is proportional to the pressure of the gas over the solution (Henry's law).


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## "like dissolves like"

$\qquad$

Two substances with similar intermolecular forces are likely to be soluble in each other.

- non-polar molecules are soluble in non-polar solvents $\qquad$

$$
\mathrm{CCl}_{4} \text { in } \mathrm{C}_{6} \mathrm{H}_{6}
$$

- polar molecules are soluble in polar solvents
$\qquad$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in $\mathrm{H}_{2} \mathrm{O}$
- ionic compounds are more soluble in polar solvents NaCl in $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{NH}_{3}(l)$


## Intermolecular Forces

1. London Forces (Dispersion Forces)
$\qquad$
2. Dipole-Dipole Interactions
3. Ion-Dipole Interactions (Salt dissolving in solution)
4. Hydrogen Bonding


The boiling point of alkanes increase with the length of the carbon chain Long-chain alkanes have larger dispersion forces because of the increased polarizability of their larger electron cloud.


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Crystals of benzoic acid contain pairs of molecules held together head to head by hydrogen bonds. These pairs then stack in planes which are held together by dispersion forces.

$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

What is the molality of a 5.86 M ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ solution whose density is $0.927 \mathrm{~g} / \mathrm{mL}$ ?
$\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})} \quad \boldsymbol{M}=\frac{\text { moles of solute }}{\text { liters of solution }}$
Assume 1 L of solution:
5.86 moles ethanol $=270 \mathrm{~g}$ ethanol
927 g of solution ( $1000 \mathrm{~mL} \times 0.927 \mathrm{~g} / \mathrm{mL}$ )
mass of solvent $=$ mass of solution - mass of solute

$$
=927 \mathrm{~g}-270 \mathrm{~g}=657 \mathrm{~g}=0.657 \mathrm{~kg}
$$

$$
\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}=\frac{5.86 \text { moles } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{0.657 \mathrm{~kg} \text { solvent }}=8.92 \mathrm{~m}
$$



## Dilutions

(Stock Conc) (volume) = (Diluted concentration)(volume)

$$
\mathbf{M}_{1} * \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}}^{*} \mathbf{V}_{2}
$$

This equation is also used at the equivalence point in a titration

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Dilution Problem 2 |
| :---: |
| How much of a 3.0 M solution of $\mathrm{HNO}_{3}$ and how much water is needed to Make 250 mL of a $0.5 \mathrm{M} \mathrm{HNO}_{3}$ solution? |
| $\mathrm{M}_{1}{ }^{*} \mathrm{~V}_{1}=\mathrm{M}_{2}{ }^{*} \mathrm{~V}_{2}$ |
| (3M) $* \mathrm{~V}_{1}=(0.5 \mathrm{M}) *$ ( 250 mL ) |
| $\mathrm{v}_{1}=\frac{0.5 \mathrm{M} * 250 \mathrm{~mL}}{3 \mathrm{M}}$ |
| $\mathrm{V} 1=42 \mathrm{~mL}$ |
| 42 mL of $3.0 \mathrm{M} \mathrm{HNO}_{3}$ and 208 mL of water is needed |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Colligative Properties

$\qquad$
$\qquad$
A colligative property is a property that change depending upon Relative numbers of solute and solvent particles.

There are four that you need to know:

## Vapor pressure <br> Boiling point <br> Freezing point Osmotic pressure

## Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles. $\qquad$

## Vapor-Pressure Lowering

$P_{1}=X_{1} P_{1}^{0} \quad P_{1}^{0}=$ vapor pressure of pure solvent $\qquad$
Raoult's law $\quad X_{1}=$ mole fraction of the solvent


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


What is the freezing point of a solution containing 478 g
of ethylene glycol (antifreeze) in 3202 g of water? The
molar mass of ethylene glycol is 62.01 g.
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} \mathrm{mi} \quad K_{\mathrm{f}}$ water $=1.86{ }^{\circ} \mathrm{C} / \mathrm{m} \quad i=1$
$\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent (kg) }}=\frac{478 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{62.01 \mathrm{~g}}}{3.202 \mathrm{~kg} \text { solvent }}=2.41 \mathrm{~m}$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m=1.86{ }^{\circ} \mathrm{C} / \mathrm{m} \times 2.41 \mathrm{~m}=4.48^{\circ} \mathrm{C}$
$\Delta T_{\mathrm{f}}=T_{\mathrm{f}}^{0}-T_{\mathrm{f}}$
$T_{\mathrm{f}}=T_{\mathrm{f}}^{\mathrm{o}}-\Delta T_{\mathrm{f}}=0.00^{\circ} \mathrm{C}-4.48^{\circ} \mathrm{C}=-4.48^{\circ} \mathrm{C}$



## Colligative Properties of Electrolyte Solutions

0.1 m NaCl solution $\longrightarrow 0.1 \mathrm{~m} \mathrm{Na}^{+}$ions \& $0.1 \mathrm{~m} \mathrm{Cl}^{-}$ions
Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.
0.1 m NaCl solution $\longrightarrow 0.2 \mathrm{~m}$ ions in solution
van't Hoff factor (i) $=\frac{\text { actual number of particles in soln after dissociation }}{\text { number of formula units initially dissolved in soln }}$

|  | should be |  |
| :---: | :---: | :---: |
| nonelectrolytes | 1 |  |
| NaCl | 2 | 12.7 |
| $\mathrm{CaCl}_{2}$ | 3 |  |



$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


