
\qquad
\qquad

Le Châtelier's Principle

If an external stress is applied to a system at equilibrium, the system adjusts in such a way that the stress is partially offset as the system reaches a new equilibrium position.

- Changes in Concentration	
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ Equilibrium shifts left to offset stress	

Le Châtelier's Principle - Changes in Concentration continued	
Change	Shifts the Equilibrium
Increase concentration of product(s)	left
Decrease concentration of product(s)	right
Increase concentration of reactant(s)	right
Decrease concentration of reactant(s)	left

Le Châtelier's Principle	
$\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})$	
Change Increase pressure Decrease pressure Increase volume Decrease volume	Shifts the Equilibrium Side with fewest moles of gas Side with most moles of gas Side with most moles of gas Side with fewest moles of gas

Le Châtelier's Principle

- Adding a Catalyst
- does not change K
- does not shift the position of an equilibrium system
- system will reach equilibrium sooner
\qquad

Catalyst lowers E_{a} Rear both forward and reverse reactions.

Le Châtelier's Principle		
Change	Shift Equilibrium	Change Equilibrium Constant
Concentration	yes	no
Pressure	yes	no
Volume	yes	no
Temperature	yes	yes
Catalyst	no	no

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Nature of the Equilibrium State
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq}) \Leftrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Chemical equilibria are dynamic

When the system is at equilibrium, the forward and reverse reactions continue, but at the same rate.

Equilibrium is a state in which there are no observable changes as time goes by.
\qquad

Chemical equilibrium is achieved when: \qquad

- the rates of the forward and reverse reactions are equal and
- the concentrations of the reactants and products remain constant \qquad
\qquad
Physical equilibrium
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Chemical equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Equilibrium Constant (K)

The equilibrium constant
relates concentrations of reactants and products at equilibrium at a given temperature to a numerical constant

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

$K=\underline{[p r o d u c t s}]$ raised to the stoich. coefficient
[reactants]raised to the stoich. coefficient

$\mathbf{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
$\therefore \quad K=\frac{[\mathrm{HI}]^{2}}{\left[\mathbf{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
The equilibrium expression will tell you the value of the equilibrium constant as well as the concentrations of the reactants and products at equilibrium

You may write you equilibrium expression solving for either Kc or Kp.

What do you think is the difference?
Kc is used in expressions for solution concentrations. Include only gases and aqueous solutions.

Kp is used in expression for pressure...so the units are in pressure instead of concentration ***Remember to only include gases in your expression for Kp***

Homogenous equilibrium applies to reactions in which all reacting species are in the same phase. \qquad
\qquad

$$
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \quad K_{p}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}
$$

In most cases
$K_{c} \neq K_{p}$
$\mathrm{aA}(\mathrm{g})+b \mathrm{~B}(\mathrm{~g}) \rightleftarrows c \mathrm{C}(\mathrm{g})+\mathrm{dD}(\mathrm{g})$

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

$\Delta \mathrm{n}=$ moles of gaseous products - moles of gaseous reactants

$$
=(c+d)-(a+b)
$$

Heterogenous equilibrium applies to reactions in which reactants and products are in different phases.

The concentration of solids and pure liquids are not included in the expression for the equilibrium constant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$2 \mathrm{NO}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
\qquad is 158 a 1000 K . What is the equilibrium pressure of O_{2} if the equilibrium pressures of $P_{\mathrm{NO}_{2}}=0.400 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{NO}}=$ 0.270 atm ?

$$
K_{p}=\frac{P_{\mathrm{NO}^{2}}^{2} P_{\mathrm{O}_{2}}}{P_{\mathrm{NO}_{2}}^{2}}
$$

\qquad
\qquad

$$
P_{\mathrm{O}_{2}}=K_{p} \frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{NO}}^{2}}
$$

\qquad

$$
P_{\mathrm{O}_{2}}=158 \times(0.400)^{2} /(0.270)^{2}=347 \mathrm{~atm}
$$

\qquad
\qquad

How do you solve the expression for either K or the equilibrium concentrations?

How to set up an ice table	
There are two ways to solve this: either for the equilibrium constant (K) or the equilibrium concentrations $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ I	Initial concentration
C	Change
E	Equilibrium concentration

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
$\begin{array}{llll}\text { Initial concentration }(M) & 0.050 & 0 & 0\end{array}$
Change in
concentration (M)
Equilibrium
oncentration (M) \quad Need to find \quad Need to find \quad Need to find
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$			
Initial concentration (M) Change in concentration (M)	0.050	0	0
Equilibrium concentration (M)	$-x$	$+x$	$+x$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

> Consider the following equilibrium at 295 K : $$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(g)
$$

The partial pressure of each gas is 0.265 atm. Calculate K_{p} and K_{c} for the reaction?
$K_{p}=P_{\mathrm{NH}_{3}} P_{\mathrm{H}_{2} \mathrm{~S}}=0.265 \times 0.265=0.0702$
$K_{p}=K_{c}(R T)^{\Delta n}$
$K_{c}=K_{p}(R T)^{-\Delta n}$
$\Delta n=2-0=2 \quad T=295 \mathrm{~K}$
$K_{c}=0.0702 \times(0.0821 \times 295)^{-2}=1.20 \times 10^{-4}$

$\mathrm{Br}_{2}(\mathrm{l}) \rightleftarrows \mathrm{Br}_{2}(\mathrm{~g})$	$K_{\mathrm{eq}}=\left(p_{\mathrm{Br}_{2}}\right)_{\mathrm{eq}}=$ Vapor pressure
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$K_{\mathrm{eq}}=\left(p_{\mathrm{H}_{2} \mathrm{O}}\right)_{\mathrm{eq}}=$ Vapor pressure

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Remember:

$K_{\text {forward }}=1 / K_{\text {reverse }}$ \qquad
\qquad
In addition:
If you add two equations together, the Knet is the product of the two Ks.
$K_{\text {net }}=\mathbf{K}_{1} \cdot \mathbf{K}_{2}$
\qquad
\qquad
\qquad
\qquad

Helpful Hints

Do not include concentrations of solids in your equilibrium expression. It is a fixed amount.

Do not include water in your expression unless you are solving for Kp which has $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in the equation. Water is present in such a large amounts that it essentially state unchanged throughout the reaction.

If the value of K is very large, what does that tell you about the reaction?

\qquad
\qquad
\qquad
\qquad
\qquad

What happens if you are not at equilibrium?
Instead of solving for K, you solve for Q, the reaction quotient

$$
\begin{gathered}
\mathbf{A}+\mathbf{B} \Leftrightarrow \mathbf{C}+\mathbf{D} \\
\mathbf{Q}=\frac{[\mathbf{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}
\end{gathered}
$$

Looks like K, but the concentrations in the expression are not the concentrations at equilibrium

```
The reaction quotient (Qc) is calculated by substituting the
initial concentrations of the reactants and products into the
equilibrium constant ( }\mp@subsup{K}{c}{}\mathrm{ ) expression.
IF
- }\mp@subsup{Q}{c}{}>\mp@subsup{K}{c}{}\mathrm{ system proceeds from right to left to reach equilibrium
- }\mp@subsup{Q}{c}{}=\mp@subsup{K}{c}{}\mathrm{ the system is at equilibrium
- }\mp@subsup{Q}{c}{}<\mp@subsup{K}{c}{}\mathrm{ system proceeds from left to right to reach equilibrium
```


What would be the purpose of knowing the value of \mathbf{Q} ?

If $Q<K$, the reaction will move to the right To re-establish equilibrium

If $Q>K$, the reaction will move to the left To re-establish equilibrium

