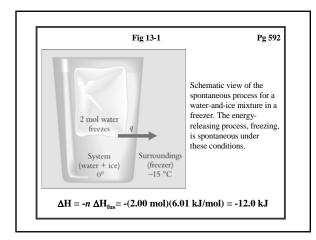
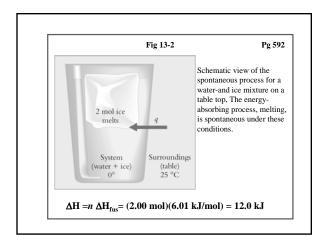
Principles of Reactivity: Entropy and Free Energy

What is the difference between system and surroundings?


Spontaneous Reactions

Some reactions are product favored; some are reactant favored


Which one would have a larger K (equilibrium constant) value?

Thermodynamics is the science of energy transfer which will help predict which way a reaction will go.

Thermodymanics does not give any information about the speed of a reaction!! Kinetics (Chapter 14) deals with that.

Both processes are spontaneous, but have different ΔH values???

Therefore, just knowing ΔH (or $\Delta E)$ is not enough to determine if a reaction is spontaneous.

A reaction is considered spontaneous if $\Delta S_{universe}$ is positive or ΔG = negative

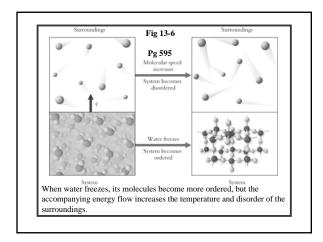
WHAT????

The sign of ΔG (free energy) determines if a reaction is spontaneous.

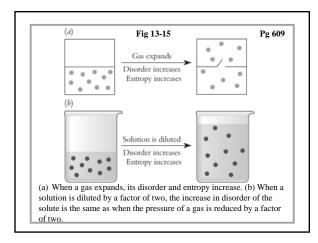
 $\Delta G = -$ reaction is spontaneous in forward direction

 $\Delta G = +$ reaction is nonspontaneous in forward

What is Entropy, ΔS ?

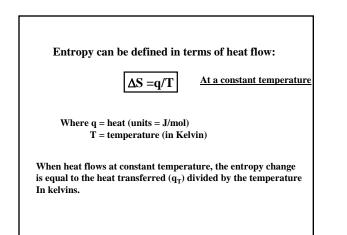

Entropy is the measure of disorder.

It is based on the assumption that at absolute 0 K, there is no disorder.


The more positive the number is for entropy, S, the more disordered it is

Which one of these has the highest disorder?

solid, liquid or gas


Which of the following reactions leads to a decrease in entropy of the system?

- A) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- B) $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$
- C) $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$
- $D) \qquad 2H_2O(l) {\begin{subarray}{c} \rightarrow 2H_2(g) + O_2(g) \\ \end{array}}$
- E) $PCl_5(s) \rightarrow PCl_3(l) + Cl_2(g)$

Useful Generalizations About Entropy

- When comparing the same or very similar substances, entropies of gases are much larger than those of liquids, which are larger than for solids
- Entropies of more complex molecules are larger than those of simpler molecules, especially in a series of closely related compounds
- Entropies of ionic solids become larger as the attractions among the ions become weaker
- Entropy usually increase when a pure liquid or solid dissolves in a solvent.

Laws of Thermodynamics				
First Law	The total energy of the universe is constant			
Second Law	The total entropy of the universe is always increasing			
Third Law	The entropy of a pure, perfectly formed crystalline substance at absolute zero is zero			

You can also use Hess' Law to determine the entropy change for a system

What is the ΔS_{system} for the reaction:

 $CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$

 $\Delta S = -332.2 \text{ J/K}$

More or less disorder for the forward reaction?

Calculating the Entropy Change in the Surroundings

 $\Delta S_{surroundings} = \underline{q_{surroundings}}_{T} = - \underline{\Delta H}_{system}$

If ΔH° = –1202 kJ and ΔS° = –217 J·K⁻¹ for the combustion of 2 moles of magnesium, the change in entropy of the surroundings at 298 K is

A) 217 J·K⁻¹

B) -217 J K⁻¹

C) $-4.03 \times 10^3 \text{ J} \cdot \text{K}^{-1}$

- D) $5.54 \times 10^3 \text{ J} \cdot \text{K}^{-1}$
- E) 4.03 x 10³ J·K⁻¹

Calculating the Entropy Change for
System and Surroundings
$$\Delta S^{\circ}_{universe} = \Delta S^{\circ}_{system} + \Delta S^{\circ}_{surroundings}$$

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(I)$$
$$\Delta S^{\circ}_{system} = -332.2 \text{ J/K}$$

$$\Delta S^{\circ}_{surroundings} = 430 \text{ J/K}$$

The Second Law

- Three possibilities:
 - If $\Delta S_{univ} > 0$process is spontaneous
 - If $\Delta S_{univ} < 0$process is spontaneous in opposite direction.
 - If $\Delta S_{univ} = 0....equilibrium$
- Here's the catch: We need to know ΔS for both the system and surroundings to predict if a reaction will be spontaneous!

Example

• Is the following reaction spontaneous at 298 K? (Is $\Delta S^{\circ}_{univ} > 0$?)

$$2\text{Fe}(s) + 3\text{H}_2\text{O}(g) \longrightarrow \text{Fe}_2\text{O}_3(s) + 3\text{H}_2(g)$$

 $\Delta S^{\circ}_{rxn} = \Delta S^{\circ}_{system} = -141.5 \text{ J/K}$

 $\Delta S^{\circ}_{surr} = -\Delta H^{\circ}_{sys}/T = -\Delta H^{\circ}_{rxn}/T$

 $\begin{array}{ll} \Delta H^{\circ}_{\mbox{ rxn}} = & \Delta H^{\circ}_{\mbox{ f}}(Fe_2O_3(s)) + 3\Delta H^{\circ}_{\mbox{ f}}(H_2(g)) \\ & - 2\Delta H^{\circ}_{\mbox{ f}}(Fe(s)) - 3 \ \Delta H^{\circ}_{\mbox{ f}}(H_2O(g)) \end{array}$

Example (cont.)

 ΔH°_{rxn} = -100 kJ

$$\Delta S^{\circ}_{surr} = -\Delta H^{\circ}_{sys}/T = 348 \text{ J/K}$$

$$\Delta S^{\circ}_{univ} = \Delta S^{\circ}_{sys} + \Delta S^{\circ}_{surr}$$

= -141.5 J/K + 348 J/K
= 207.5 J/K

 $\Delta S^{\circ}_{\ univ}\!>\!0\;$; therefore, reaction is spontaneous

Entropy and Phase Changes

- Phase Change: Reaction in which a substance goes from one phase of state to another.
- Example: $H_2O(1) \longrightarrow H_2O(g) @ 373 K$
- Phase changes are equilibrium processes such that: $\Delta S_{univ} = 0 \label{eq:sum}$

S and Phase Changes (cont.)

 $H_2O(l) \longrightarrow H_2O(g) @ 373 K$

• Now,
$$\Delta S^{\circ}_{rxn} = S^{\circ}(H_2O(g)) - S^{\circ}(H_2O(l))$$

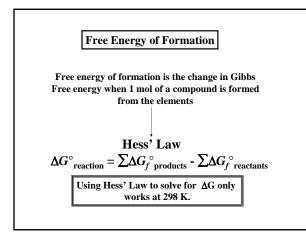
= 195.9 J/K - 86.6 J/K
= 109.1 J/K

• And, $\Delta S^{\circ}_{surr} = -\Delta H_{sys}/T$ = -40.7 kJ/373 K = -109.1 J/K

• Therefore,
$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = 0$$

Example

• Determine the temperature at which liquid bromine boils:


$$Br_2(l) \longrightarrow Br_2(g)$$

• Now, $\Delta S^{\circ}_{rxn} = S^{\circ}(Br_2(g)) - S^{\circ}(Br_2(l))$ = 245.38 J/K - 152.23 J/K = 93.2 J/K

Example (cont.)

- Now, $\Delta S^{\circ}_{surr} = -\Delta S^{\circ}_{sys} = -93.2 \text{ J/K} = -\Delta H_{sys}/T$
- Therefore, calculate ΔH_{sys} and solve for T! $$_0$$
- Now, $\Delta H^{\circ}_{rxn} = \Delta H^{\circ}_{f}(Br_{2}(g)) \Delta H^{\circ}_{f}(Br_{2}(l))$ = 30.91 kJ - 0 (standard state) = 30.91 kJ
- Such that, -93.2 J/K = -30.91 kJ/T $T_{boiling} = 331.6 \ K$

 ΔG allows spontaneity to be calculated based on the *system*.

Gibbs Free Energy

The Gibbs Free Energy equation allows ∆G to be calculated at other temperatures

$$\Delta G^{\circ}_{\text{system}} = \Delta H^{\circ}_{\text{system}} - T\Delta S^{\circ}_{\text{system}}$$

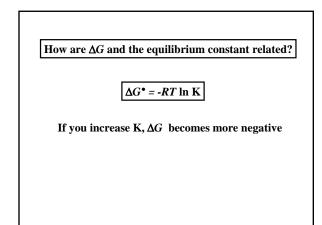
Gibbs Free Energy

The Gibbs Free Energy equation allows ΔG allows spontaneity to be at different temperatures

$$\Delta G^{\circ}_{\text{system}} = \Delta H^{\circ}_{\text{system}} - T\Delta S^{\circ}_{\text{system}}$$

ΔH	ΔS	Temp	ΔG	Spontaneous Direction
-	+	All	-	Forward
-	-	Low	-	Forward
		High	+	Reverse
+	+	Low	+	Reverse
		High	-	Forward
+	-	All	+	Reverse

How is ΔG related to Q?


Wait, what is Q?

 $\Delta G = \Delta G^{\bullet} + RT \ln \mathbf{Q}$

At equilibrium, ΔG is equal to 0.

Estimate the normal boiling point of $Br_2(l),$ given the molar enthalpy and molar entropy of vaporization of 30.7 kJ·mol–1 and 93.0 J·K–1·mol–1, respectively.

- A) 303°C
- B) 57°C
- C) 30°C
- D) 330°C
- E) 100°C

If a reaction is product-favored, it is considered to be spontaneous

If a reaction is reactant-favored, it is considered to be nonspontaneous

Temperature and the Equilibrium Constant

The effect of temperature on K depends on the sign of ΔH

 $\frac{\text{Sign of } \Delta H}{\text{M}} \quad \frac{\text{Temperature}}{\text{Temperature}} \quad \underline{K}$

+ (endothermic) increase increase

- (exothermic) increase decrease