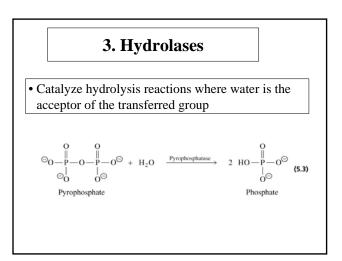
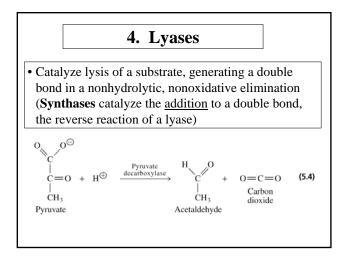
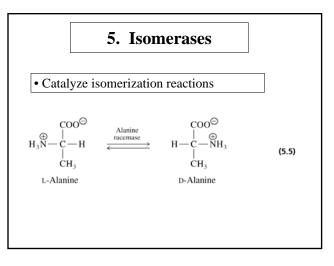
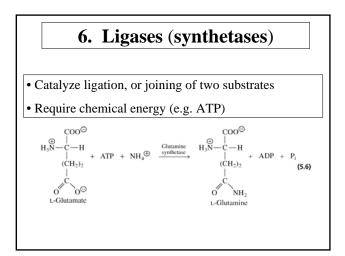
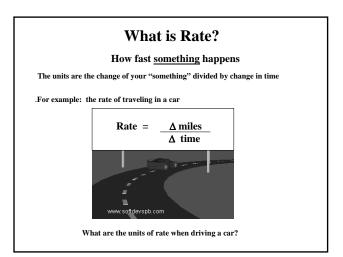

Properties of enzymes (continued)


- **Stereospecificity** many enzymes act upon only one stereoisomer of a substrate
- **Reaction specificity** enzyme product yields are essentially 100% (there is no formation of wasteful byproducts)
- Active site where enzyme reactions take place

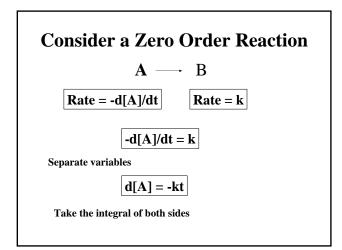

The Six Classes of Enzymes

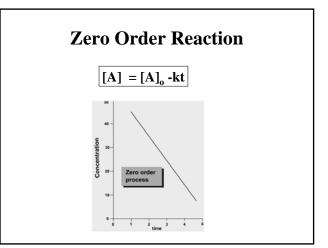

- 1. Oxidoreductases (dehydrogenases)
- Catalyze oxidation-reduction reactions

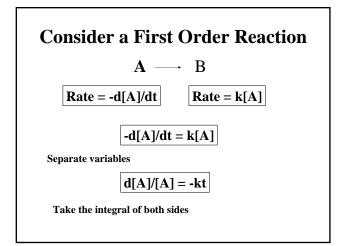

$$\begin{array}{c} \text{COO}^{\bigcirc} \\ | \\ \text{HO}-\text{C}-\text{H} + \text{NAD}^{\oplus} \xrightarrow[\text{charate}]{\text{dehydrogenase}} \\ | \\ \text{CH}_3 \\ \text{L-Lactate} \\ \end{array} \xrightarrow[\text{CH}_3]{\text{COO}^{\ominus}} \\ \begin{array}{c} \text{Lactate} \\ | \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \xrightarrow[\text{COO}^{\ominus}]{\text{COO}^{\ominus}} \\ (\text{S.1}) \\ (\text{S.1}) \\ (\text{S.1}) \\ (\text{S.2}) \\ (\text{S.3}) \\ (\text{S.$$

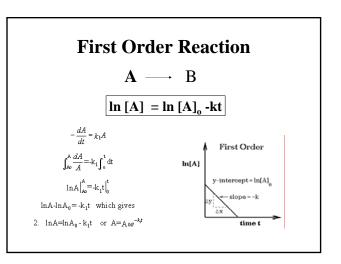


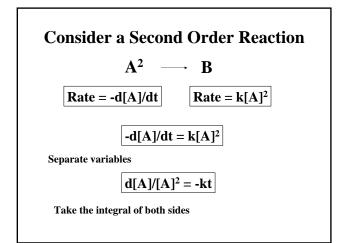
<u>Chemical Kinetics</u> is similar except the "change in something" is change in concentration over change in time.

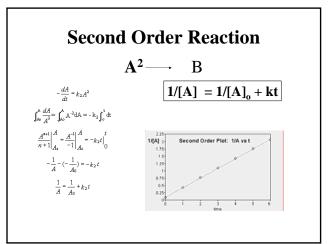

 $Rate = \frac{\Delta \text{ [concentration]}}{\Delta \text{ time}}$


Another way to write it is.....


 $Rate = \frac{d[concentration]}{dt}$


** remember if the concentration are reactants, there is a negative sign in front of the change in concentration to make overall rate positive.


. Effect of Concentration on Reaction Rates The best way to describe how concentration of reactants affect rates is to use a rate law Consider the reaction: Rate constant A + B → C Rate = k[A]^x[B]^y x and y are NOT necessarily from the stoichiometry in the reaction



Chemical Kinetics

- Experiments examine the amount of **product** (P) formed per unit of time $(\Delta[P] / \Delta t)$
- Velocity (v) the rate of a reaction (varies with reactant concentration)
- **Rate constant** (*k*) indicates the speed or efficiency of a reaction

First order rate equation

• Rate for <u>nonenzymatic</u> conversion of substrate (S) to product (P) in a first order reaction: (*k* is expressed in reciprocal time units (s⁻¹))

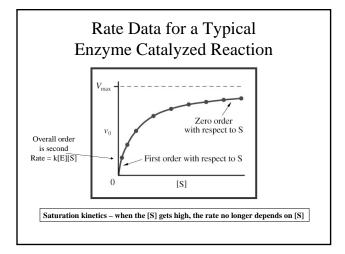
$$\mathbf{d}[\mathbf{P}] / \mathbf{d}\mathbf{t} = v = k[\mathbf{S}]$$

Second order reaction

- For reactions: $S_1 + S_2 \longrightarrow P_1 + P_2$
- Rate is determined by the concentration of <u>both</u> substrates
- Rate equation: $v = k[S_1]^1[S_2]^1$

Pseudo first order reaction

- If the concentration of one reactant is so high that it remains essentially constant, reaction becomes <u>zero</u> order with respect to that reactant
- Overall reaction is then pseudo first-order

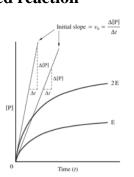

$$v = k[S_1]^1[S_2]^0 = k'[S_1]^1$$

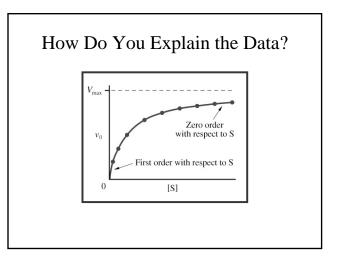
Enzyme Kinetics

• Enzyme-substrate complex (ES) - complex formed when specific substrates fit into the enzyme active site

$$\mathbf{E} + \mathbf{S} \longrightarrow \mathbf{ES} \longrightarrow \mathbf{E} + \mathbf{P}$$

- When [S] >> [E], every enzyme binds a molecule of substrate (enzyme is **saturated** with substrate)
- Under these conditions the rate depends only upon [E], and the reaction is **pseudo-first order**


• Maximum velocity (V_{max}) is reached when an enzyme is <u>saturated with substrate</u> (high [S])


- At <u>high</u> [S] the reaction rate is <u>independent</u> of [S] (zero order with respect to S)
- At <u>low</u> [S] reaction is <u>first order</u> with respect to S
- The shape of a v_o versus [S] curve is a rectangular hyperbola, indicating saturation of the enzyme active site as [S] increases

Progress curve for an enzyme-catalyzed reaction

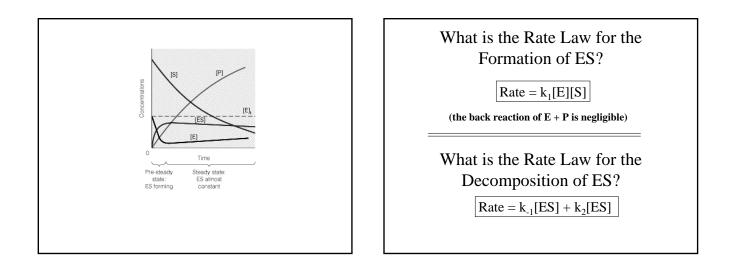
- The initial velocity (v_o) is the slope of the initial linear portion of the curve
- Rate of the reaction doubles when twice as much enzyme is used

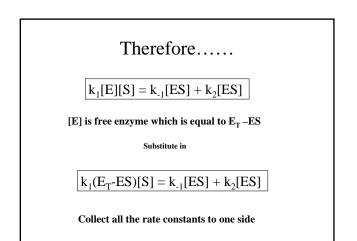
$$\mathbf{E} + \mathbf{S} \xrightarrow[k_1]{k_1} \mathbf{ES} \xrightarrow{k_2} \mathbf{E} + \mathbf{P}$$

- k₁ and k₋₁ represent rapid noncovalent association /dissociation of substrate from enzyme active site
- $k_2 =$ rate constant for formation of product from ES

Which of these reactions is the rate-determining step?

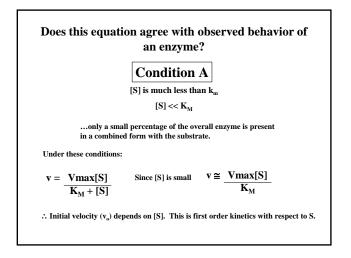
Rate =
$$k_1[E][S]$$
 Rate = $k_{.1}[ES]$
Rate = $k_2[ES]$
Because it is a chemical change instead of nonconvalent
interaction like substrate binding

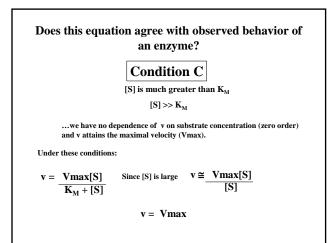

Since formation of product is the rate determining step, there is a period of time that the rate of formation of ES equals the rate of decomposition

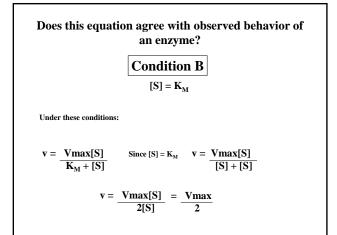

This is called Steady State Approximation

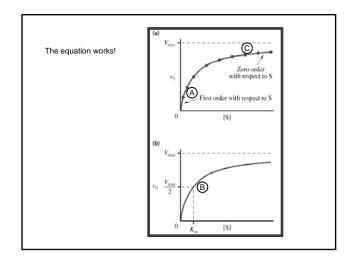
[ES] = constant

Rate of ES formation = Rate of ES decomposition

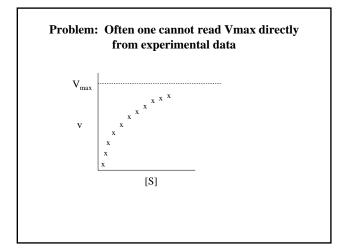

$$\frac{\mathbf{k_1} + \mathbf{k_2}}{\mathbf{k_1}} = \frac{(\mathbf{E_T} - [\mathbf{ES}])[\mathbf{S}]}{[\mathbf{ES}]}$$

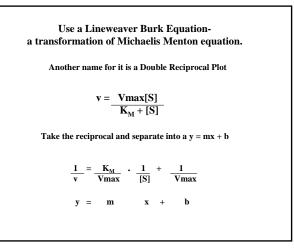

$$\mathbf{K_M} \qquad \text{Michaelis Constant}$$

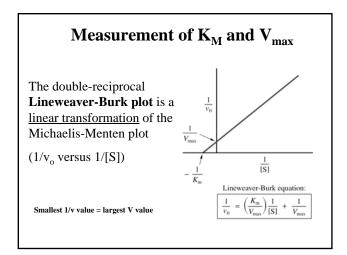

$$\mathbf{K_M} = \frac{(\mathbf{E_T} - [\mathbf{ES}])[\mathbf{S}]}{[\mathbf{ES}]}$$
Solve for ES

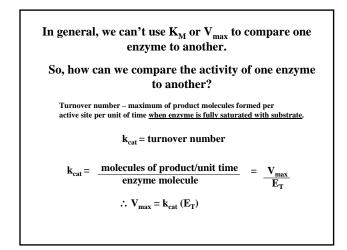

$$[ES] = \frac{E_T[S]}{K_M + [S]}$$

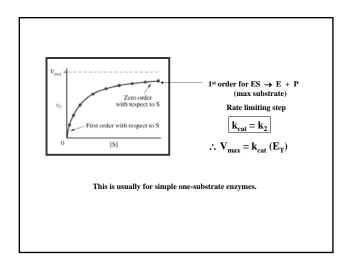
Express [ES] in terms that we can measure
Remember the rate determining step: $v = k_2$ [ES]
 \therefore [ES] = v/k_2
Substitute $v = \frac{k_2 E_T[S]}{K_M + [S]}$

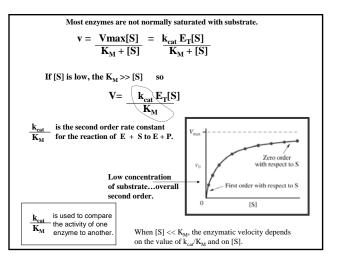

 $\mathbf{v} = \frac{\mathbf{k}_2 \mathbf{E}_T[\mathbf{S}]}{\mathbf{K}_M + [\mathbf{S}]}$ When the substrate concentration is much larger than [E], the enzyme will be saturated with substrate and virtually all the enzyme will be present as ES thus leading to the attainment of the maximum velocity. $\therefore \mathbf{Vmax} = \mathbf{k}_2 \mathbf{E}_T$ Substitute $\mathbf{v} = \frac{\mathbf{Vmax}[\mathbf{S}]}{\mathbf{K}_M + [\mathbf{S}]}$ Michaelis-Menton Equation

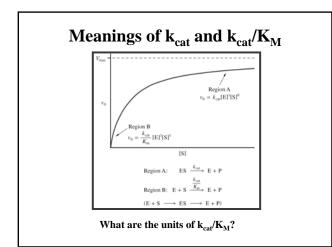


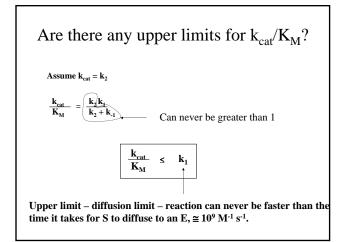





The Meanings of K_M


- $K_M = [S]$ when $v_o = 1/2_{Vmax}$
- $K_M \cong k_{.1} / k_1 = K_s$ (the enzyme-substrate dissociation constant) when $k_{cat} <<$ either k_1 or $k_{.1}$
- The <u>lower</u> the value of K_M, the <u>tighter</u> the substrate binding
- K_M can be a measure of the <u>affinity</u> of E for S


$$K_{M} = \frac{(E_{T} - [ES])[S]}{[ES]}$$
 Free enzyme
Bound enzyme



Examples of catalytic constants	Examples	of catal	ytic cons	stants
--	----------	----------	-----------	--------

Enzyme	k _{cat} (s ⁻¹)
Papain	10
Ribonuclease	10^{2}
Carboxypeptidase	10^{2}
Trypsin	10^2 (to 10^3)
Acetylcholinesterase	10 ³
Kinases	10 ³
Dehydrogenases	10 ³
Transaminases	10 ³
Carbonic anhydrase	106
Superoxide dismutase	106
Catalase	107

Values of k_{cat}/K_M

- k_{cat}/K_M can approach rate of encounter of two uncharged molecules in solution (10⁸ to 10⁹M⁻¹s⁻¹)
- k_{cat}/K_M is also a measure of enzyme <u>specificity</u> for different substrates (**specificity constant**)
- rate acceleration = k_{cat}/k_n
- $(k_n = rate constant in the absence of enzyme)$

	Nonenzymatic rate constant $(k_n \text{ in s}^{-1})$	Enzymatic rate constant $(k_{cat} \text{ in s}^{-1})$	Rate acceleration (k _{cat} /k _n)
Carbonic anhydrase	10^{-1}	106	8×10^{6}
Chymotrypsin	4×10^{-9}	4×10^{-2}	107
Lysozyme	3×10^{-9}	5×10^{-1}	2×10^8
Triose phosphate isomerase	$4 imes 10^{-6}$	$4 imes 10^3$	10^{9}
Fumarase	2×10^{-8}	2×10^3	1011
β-Amylase	3×10^{-9}	10 ³	3×10^{11}
Adenosine deaminase	2×10^{-10}	4×10^2	2×10^{12}
Urease	3×10^{-10}	3×10^4	1014
Mandelate racemase	3×10^{-13}	$5 imes 10^2$	$1.7 imes10^{15}$
Alkaline phosphatase	10-15	10 ²	1017
Orotidine 5'-phosphate decarboxylase	3×10^{-16}	4×10	1017

Factors that Affect Enzyme Activity

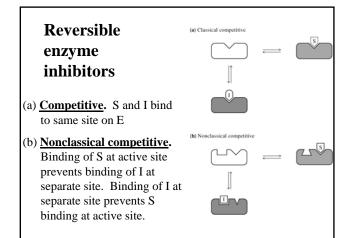
- Temperature
- pH
- Inhibitors

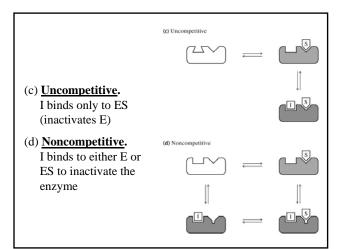
Temperature

In general, a 10°C increase in T doubles the rate

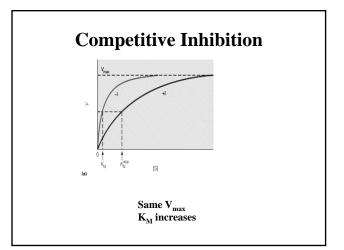
pН

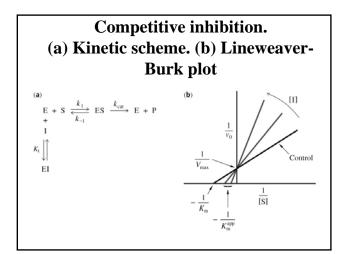
Each enzyme has its own range of pH in which it will work.


Two good examples are the enzymes pepsin and catalase.


Pepsin only works between pH 1 - pH 4 (acidic) Catalase only works between pH 7 - pH 11

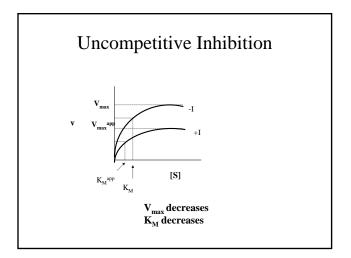
Reversible Enzyme Inhibition

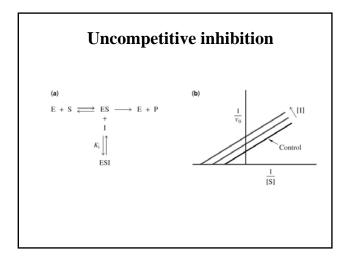

- Inhibitor (I) binds to an enzyme and prevents formation of ES complex or breakdown to E + P
- Inhibition constant (K_I) is a dissociation constant EI $\xrightarrow{\longrightarrow}$ E + I
- There are three basic types of inhibition: **Competitive**, **Uncompetitive** and **Noncompetitive**
- These can be distinguished experimentally by their effects on the enzyme kinetic patterns



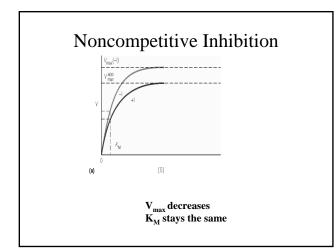
A. Competitive Inhibition

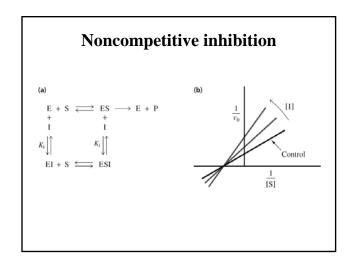
- Inhibitor binds only to free enzyme (E) not (ES)
- Substrate cannot bind when I is bound at active site (S and I "compete" for the enzyme active site)
- V_{max} is the same with or without I (high S can still saturate the enzyme even in the presence of I)
- Apparent $K_M\,(K_M{}^{app})$ measured in the presence of $\,I$ is larger than $K_M\,(measured\ in\ absence\ of\ I)$
- Competitive inhibitors usually <u>resemble the substrate</u>



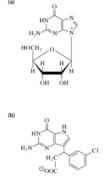


B. Uncompetitive Inhibition


- Uncompetitive inhibitors bind to ES not to free E
- + V_{max} decreased by conversion of some E to ESI
- $K_M (K_M^{app})$ is also decreased
- Lines on double-reciprocal plots are parallel
- This type of inhibition usually only occurs in multisubstrate reactions



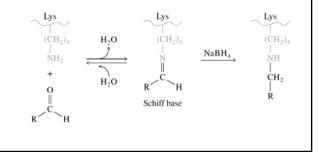
C. Noncompetitive Inhibition


- Noncompetitive inhibitors bind to <u>both</u> E and ES
- Inhibitors do not bind at the same site as S
- V_{max} decreases
- K_m does not change
- Inhibition cannot be overcome by addition of S
- Lines on double-reciprocal plot intersect on x axis

D. Uses of Enzyme Inhibition

Comparison of a substrate (a) and a designed inhibitor (b) for the enzyme purine nucleoside phosphorylase

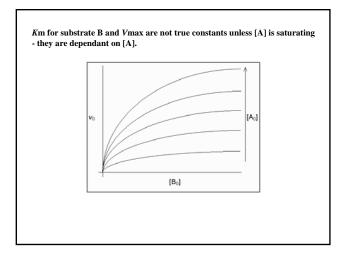
Irreversible Enzyme Inhibition

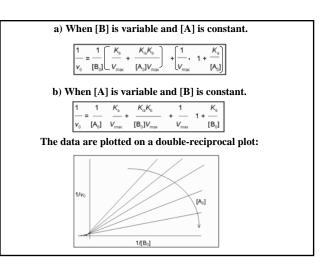

- Irreversible inhibitors form <u>stable covalent bonds</u> with the enzyme (e.g. alkylation or acylation of an active site side chain)
- There are many naturally-occurring and synthetic irreversible inhibitors
- These inhibitors can be used to identify the amino acid residues at enzyme active sites
- Incubation of I with enzyme results in loss of activity

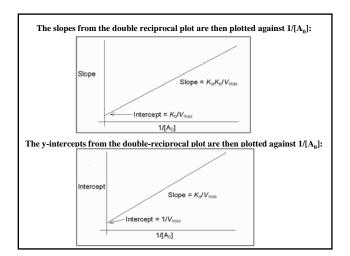
Affinity labels for studying enzyme active sites

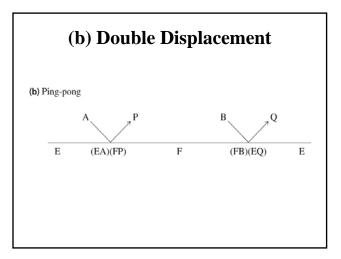
- Affinity labels are active-site directed reagents
- They are *irreversible* inhibitors
- Affinity labels resemble substrates, but contain reactive groups to interact covalently with the enzyme

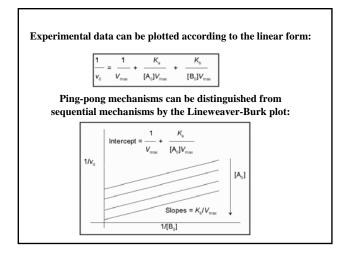
Covalent complex with lysine residues

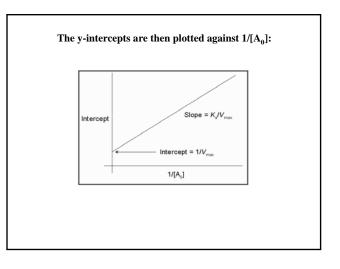

• Reduction of a Schiff base forms a stable substituted enzyme

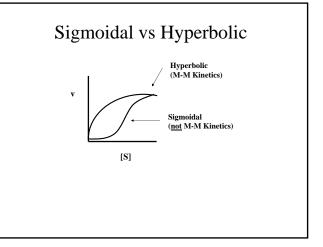



Inhibition of serine protease with DFP


- Diisopropyl fluorophosphate (DFP) is an organic phosphate that inactivates serine proteases
- DFP reacts with the active site serine (Ser-195) of chymotrypsin to form DFP-chymotrypsin
- Such organophosphorous inhibitors are used as insecticides or for enzyme research
- These inhibitors are toxic because they inhibit acetylcholinesterase (a serine protease that hydrolyzes the neurotransmitter acetylcholine)


Kinetics of Multisubstrate Reactions (a) Seque **Single Displacement** (a) Sequential E EA (EAB) (EPQ) EO (ordered or random) Ordered EA EO (EAB)(EPO EB EP Random





<u>Regulatory Enzymes</u> (group of enzymes which do not exhibit MM Kinetics)

 $\mathbf{A} \xrightarrow{\mathbf{E}_1} \mathbf{B} \xrightarrow{\mathbf{E}_2} \mathbf{C} \xrightarrow{\mathbf{E}_3} \mathbf{D} \dots$

- Often E₁ is a regulatory enzyme (1st committed step in a metabolic sequence of reactions)
- Often multimeric
- Often bind some metabolite other than S at a place other than the active site which will affect activity (allosterism)
- Often exhibit sigmodial kinetics

The best way to understand the difference between hyperbolic (M-M) and sigmoidal (non M-M) is to study the difference between Myoglobin and Hemoglobin

Protein component of Mb and Hb is globin

- Myoglobin is composed of 8 α helices
- Heme prosthetic group binds oxygen
- **His-93** is complexed to the iron atom, and **His-64** forms a hydrogen bond with oxygen
- Interior of Mb almost all hydrophobic amino acids
- Heme occupies a hydrophobic cleft formed by three a helices and two loops

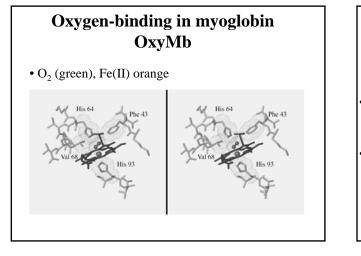
Hemoglobin (Hb)

- Hb is an $\alpha_2\beta_2$ tetramer (2 α globin subunits, 2 β globin subunits)
- Each globin subunit is similar in structure to myoglobin
- Each subunit has a heme group
- The α chain has 7 α helices, β chain has 8 α helices

Myoglobin vs Hemoglobin

- Single polypeptide chain
- 153 amino acids
- Typical globular protein
- In muscle
- Contains One Heme
- Stores oxygen
- Follows M-M

- 4 polypeptide chains 2 α 141 AA; 2 β 145 AA
- In Red Blood Cells
- Contains Four Heme Groups
- Carries oxygen
- Does not follow M-M


Oxygen Binding to Mb and Hb

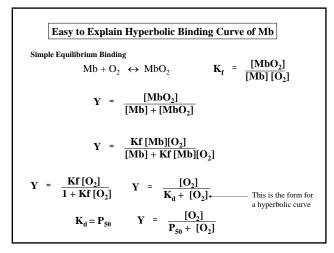
- A. Oxygen Binds Reversibly to Heme
- Oxymyoglobin oxygen bearing myoglobin
- Deoxymyoglobin oxygen-free myoglobin
- In oxymyoglobin, six ligands are coordinated to the ferrous ion in octahedral symmetry
- Oxygen is coordinated between the iron and the imidazole sidechain of His-64

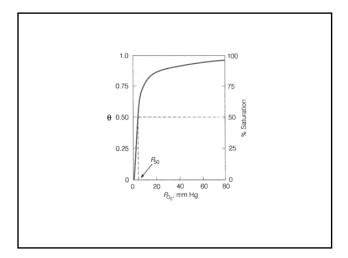
Oxygen-binding site of whale oxymyoglobin

- Octahedral geometry of coordination complex (six ligands around iron)
- His-93 (proximal histidine) liganded to Fe
- His-64 (distal histidine)

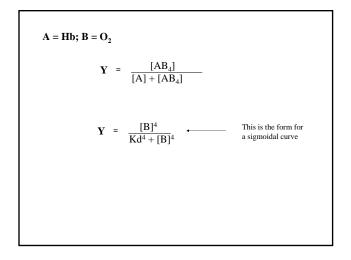
Heme

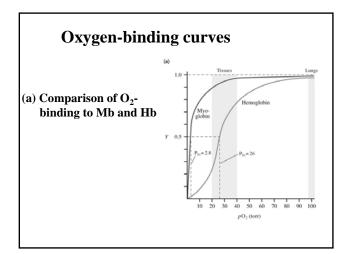
Conformational changes in a hemoglobin chain induced by oxygenation

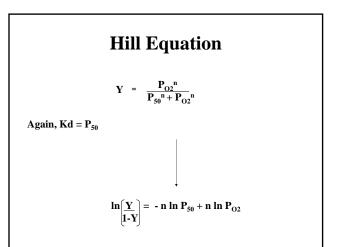

- Oxygen binding to Fe pulls the His toward ring plane
- Helix with His shifts position, disrupting some ion pairs between subunits (blue to red position)

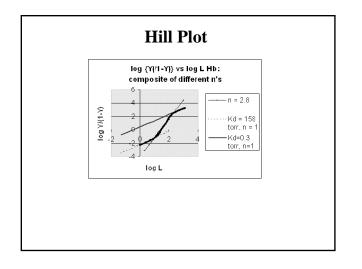

Oxygen-Binding Curves of Myoglobin and Hemoglobin

- Curves show <u>reversible</u> <u>binding</u> of O₂ to Mb and Hb
- <u>Fractional saturation</u> (Y) is plotted versus the partial pressure of oxygen, pO₂ (oxygen concentration)
- The shape of the Hb curve shows a **positive cooperativity** in the binding of 4 O₂ molecules (i.e. the O₂ affinity of Hb <u>increases</u> as each O₂ molecule is bound)


O₂ binding curves (continued)


- Mb-O₂ binding curve is <u>hyperbolic</u>, indicating a single equilibrium constant for binding O₂
- Hb-O₂ binding curve is <u>sigmoidal</u>, and reflects the binding of 4 molecules of O₂, one per each heme group





Hemoglobin un	like Myoglobin	has Sequenti	al Interaction
	means that the bind other through some	•	
$A = Hb; B = O_2$			
$\mathbf{A} + \mathbf{B}$	⇔ AB	K _f	
$AB + O_2$	$\leftrightarrow AB_2$	aK _f a	>1
$AB_2 + O_2$	$_2 \leftrightarrow AB_3$	abK _f b	>1
$AB_3 + O$	$P_2 \leftrightarrow AB_4$	abcK _f c	z > 1
Take this model to its log sigmoidal binding data.	ical conclusion which	gives an equation	useful for analyzing
All or nothing!	$A + 4B \iff$	AB ₄	$\mathbf{K'} = \underline{[\mathbf{AB}_4]}{[\mathbf{A}][\mathbf{B}]^4}$

$$\label{eq:n_H} \begin{split} & \mathbf{n}_{H} = \textbf{maximum slope} \\ & \mathbf{n}_{H} = 1 \ \ \textbf{hyperbolic binding (noncooperative)} \\ & \mathbf{n}_{H} > 1 \ \ \textbf{positive cooperativity (filling one binding site increases the affinity of other binding sites)} \\ & \mathbf{n}_{H} < 1 \ \ \textbf{negative cooperativity} \\ & \mathbf{n}_{H} = \mathbf{n} \ \ \textbf{(where n = 4) complete cooperativity for Hb} \\ & \ \ For \ hemoglobin, \ n_{H} = 2.8 \\ \hline \ \textbf{How does positive cooperativity work?} \\ & \ \ \textbf{Conformational change on binding} \end{split}$$

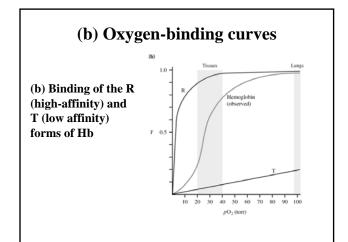
The Hill Coefficient

Regulation of Enzyme Activity

- **Regulatory enzymes** activity can be reversibly modulated by effectors
- Such enzymes are usually found at the first unique step in a metabolic pathway (the first "committed" step)
- Regulation at this step conserves material and energy and prevents accumulation of intermediates

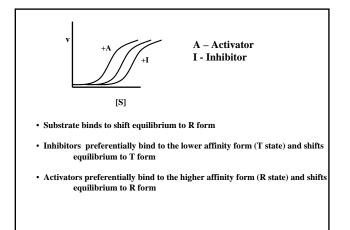
Two Methods of Regulation

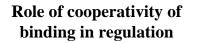
- (1) Noncovalent allosteric regulation
- (2) Covalent modification
- Allosteric enzymes have a second regulatory site (allosteric site) distinct from the active site
- <u>Allosteric inhibitors</u> or <u>activators</u> bind to this site and regulate enzyme activity via conformational changes

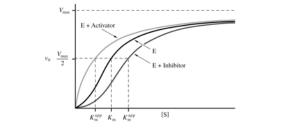

Hemoglobin is an Allosteric Protein

- Oxygen binding and release from Hb are regulated by **allosteric interactions**
- Allosteric effectors (modulators) bind to a protein at a site separate from the functional binding site (may be activators or inhibitors)
- The activity of an **allosteric protein** is regulated by allosteric effectors

Two conformations of hemoglobin: T and R


- Active (R state) and inactive (T state) forms are in <u>rapid equilibrium</u> in allosteric proteins
- Binding of <u>substrates</u> and allosteric <u>activators</u> stabilize the R state and shift the equilibrium in the <u>R direction</u>
- Allosteric <u>inhibitors</u> stabilize the T state and shift the equilibrium in the <u>T direction</u>

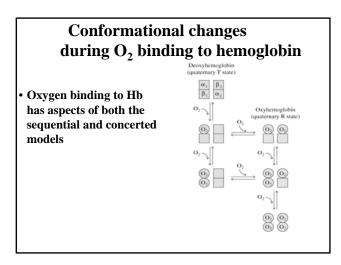

Equilibrium between different conformations of protein in aqueous solution $\begin{array}{c} R & \longleftrightarrow & T \\ Relaxed & & T \\ Relaxed & & T \\ High Affinity & Tense \\ Low Affinity \end{array}$ Positive cooperativity – O₂ binds preferentially to R form and shifts the equilibrium to R side

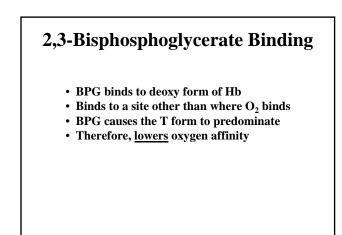

	(a)		(b)
Two models	T state	R state	T state
		s↓	s↓
(a) <u>Concerted model</u> :		S	s
subunits either all T state or all R state		s	s
(b) Sequential model:		S	S
Mixture of T subunits and		s∣ĵ	s
R subunits is possible.		ŚŚ	ss.
Binding of S converts only that subunit from T to R		US slî	(S) s∫
		(S)(S)	s)s)
		SS	S S R state

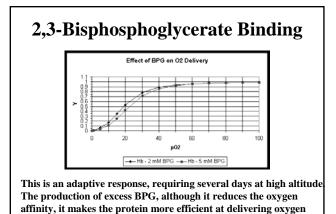
Concerted Theory Symmetry-driven Theory _____ The enzyme has two forms –all ® form or all T form The binding to inhibitors and activators will bind to either the T or R state, respectively.

- Addition of modulators alters enzyme activity
- Activators can lower $\mathbf{K}_{\mathbf{M}}$, inhibitors can raise $\mathbf{K}_{\mathbf{M}}$

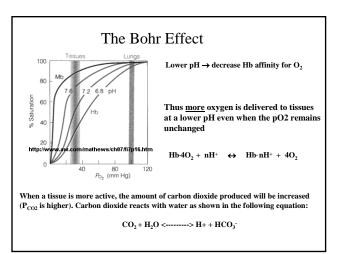
Sequential Theory


Ligand-induced Theory


The enzyme has two forms – R form and T form but it <u>differs from concerted theory in allowing the existence of both</u> <u>high- and low-affinity subunits in an oligomeric molecule</u> <u>with fractional saturation.</u>


Hill Equation - Quantify the cooperativity

Allosteric Effects on Hemoglobin


- Oxygen Binding
- 2,3-Bisphosphoglycerate binding
- pH (Bohr Effect)

to the tissues at high altitudes.

