





















## Nonpolar Substances Are Insoluble in Water

- Hydrophobic (water-fearing) molecules are nonpolar
- **Hydrophobic effect** the exclusion of nonpolar substances by water (critical for protein folding and self-assembly of biological membranes)
- Amphipathic molecules have hydrophobic chains and ionic or polar ends. Detergents (surfactants) are examples.





## Noncovalent Interactions in Biomolecules

Weak noncovalent interactions are important in:

- Stabilization of proteins and nucleic acids
- Recognition of one biopolymer by another
- Binding of reactants to enzymes

# **Noncovalent forces**

There are four major types of noncovalent forces:

- (1) Charge-charge interactions
- (2) Hydrogen bonds
- (3) Van der Waals forces
- (4) Hydrophobic interactions

# A. Charge-Charge Interactions (Ion Pairing)

- <u>Electrostatic interactions</u> between two charged particles
- Can be the strongest type of noncovalent forces
- Can extend over greater distances than other forces
- <u>Charge repulsion</u> occurs between similarly charged groups

#### Types of attractive charged interactions

- Salt bridges attractions between oppositelycharged functional groups in proteins
- **Ion pairing** a salt bridge buried in the hydrophobic interior of a protein is stronger than one on the surface

## **B.** Hydrogen Bonds

- Among the strongest of noncovalent interactions
- H atom bonded to N, O, S can hydrogen bond to another electronegative atom (~0.2 nm distance)
- Total distance between the two electronegative atoms is  $\sim 0.27$  to 0.30 nm
- In aqueous solution, water can H-bond to exposed functional groups on biological molecules









- Strongly repulsive at short internuclear distances, very weak at long internuclear distances
- Van der Waals attraction is maximal when two atoms are separated by their van der Waals radii



| Van der Waals radii<br>of several atoms |                               |  |  |
|-----------------------------------------|-------------------------------|--|--|
| TABLE 2.2<br>several ato                | Van der Waals radii of<br>oms |  |  |
| Atom                                    | Radius (nm)                   |  |  |
| Hydrogen                                | 0.12                          |  |  |
| Oxygen                                  | 0.14                          |  |  |
| Nitrogen                                | 0.15                          |  |  |
| Carbon                                  | 0.17                          |  |  |
| Sulfur                                  | 0.18                          |  |  |
| Dhoonhomio                              | 0.19                          |  |  |

## **D.** Hydrophobic Interactions

- Association of a relatively <u>nonpolar molecule</u> or group with other nonpolar molecules
- Depends upon the <u>increased entropy</u>  $(+\Delta S)$  which occurs when water molecules surrounding a nonpolar molecule are freed to interact with each other in solution
- The cumulative effects of many hydrophobic interactions can have a significant effect on the stability of a macromolecule







| TABLE<br>[OH <sup>⊖</sup> ] | <b>TABLE 2.3</b> Relation of $[H^{\oplus}]$ and $[OH^{\bigcirc}]$ to pH |                    |  |
|-----------------------------|-------------------------------------------------------------------------|--------------------|--|
|                             | [H⊕]                                                                    | [OH <sup>⊖</sup> ] |  |
| рН                          | (M)                                                                     | (M)                |  |
| 0                           | 1                                                                       | $10^{-14}$         |  |
| 1                           | $10^{-1}$                                                               | $10^{-13}$         |  |
| 2                           | $10^{-2}$                                                               | $10^{-12}$         |  |
| 3                           | $10^{-3}$                                                               | $10^{-11}$         |  |
| 4                           | $10^{-4}$                                                               | $10^{-10}$         |  |
| 5                           | $10^{-5}$                                                               | $10^{-9}$          |  |
| 6                           | $10^{-6}$                                                               | $10^{-8}$          |  |
| 7                           | $10^{-7}$                                                               | $10^{-7}$          |  |
| 8                           | $10^{-8}$                                                               | $10^{-6}$          |  |
| 9                           | $10^{-9}$                                                               | $10^{-5}$          |  |
| 10                          | $10^{-10}$                                                              | $10^{-4}$          |  |
| 11                          | $10^{-11}$                                                              | $10^{-3}$          |  |
| 12                          | $10^{-12}$                                                              | $10^{-2}$          |  |
| 13                          | $10^{-13}$                                                              | $10^{-1}$          |  |
| 14                          | $10^{-14}$                                                              | 1                  |  |



#### Acid Dissociation Constants of Weak Acids

• Strong acids and bases dissociate completely in water

$$HCI + H_2O \longrightarrow CI^- + H_3O^+$$

- Cl<sup>-</sup> is the **conjugate base** of HCl
- H<sub>3</sub>O<sup>+</sup> is the **conjugate acid** of H<sub>2</sub>O



# The Henderson-Hasselbalch Equation

- Defines the pH of a solution in terms of:
  - (1) The  $pK_a$  of the weak acid

(2) Concentrations of the weak acid (HA) and conjugate base (A<sup>-</sup>)

$$pH = pK_a + \log \frac{[A^{\bigcirc}]}{[HA]}$$

| TABLE 2.4 Dissociation constants and $p\textit{K}_a$ values of weak acids in aqueous solutions at 25° C |                        |      |  |  |  |
|---------------------------------------------------------------------------------------------------------|------------------------|------|--|--|--|
|                                                                                                         |                        |      |  |  |  |
| HCOOH (Formic acid)                                                                                     | $1.77 \times 10^{-4}$  | 3.8  |  |  |  |
| CH <sub>3</sub> COOH (Acetic acid)                                                                      | $1.76 \times 10^{-5}$  | 4.8  |  |  |  |
| CH <sub>3</sub> CHOHCOOH (Lactic acid)                                                                  | $1.37 \times 10^{-4}$  | 3.9  |  |  |  |
| $H_3PO_4$ (Phosphoric acid)                                                                             | $7.52 \times 10^{-3}$  | 2.2  |  |  |  |
| $H_2PO_4^{\bigoplus}$ (Dihydrogen phosphate ion)                                                        | $6.23 \times 10^{-8}$  | 7.2  |  |  |  |
| HPO <sub>4</sub> <sup>(2)</sup> (Monohydrogen phosphate ion)                                            | $2.20 \times 10^{-13}$ | 12.7 |  |  |  |
| $H_2CO_3$ (Carbonic acid)                                                                               | $4.30 \times 10^{-7}$  | 6.4  |  |  |  |
| $HCO_3^{\bigcirc}(Bicarbonate ion)$                                                                     | $5.61 \times 10^{-11}$ | 10.2 |  |  |  |
| NH₄ <sup>⊕</sup> (Ammonium ion)                                                                         | $5.62 \times 10^{-10}$ | 9.2  |  |  |  |
| CH <sub>2</sub> NH <sub>2</sub> <sup>⊕</sup> (Methylammonium ion)                                       | $2.70 \times 10^{-11}$ | 10.7 |  |  |  |







# **Buffered Solutions Resist Changes in pH**

- <u>Buffer capacity</u> is the ability of a solution to resist changes in pH
- <u>Most effective buffering</u> occurs where: solution  $pH = buffer pK_a$
- At this point: [weak acid] = [conjugate base]
- Effective <u>buffering range</u> is usually at pH values equal to the pKa ± 1 pH unit

# Regulation of pH in the blood of animals

- Blood plasma of mammals has a <u>constant pH</u> which is regulated by a buffer system of: carbon dioxide /carbonic acid /bicarbonate
- <u>Buffer capacity</u> depends upon equilibria between:
  - (1) Gaseous CO<sub>2</sub> (air spaces of the lungs)
  - (2) Aqueous  $CO_2$  (dissolved in the blood)
  - (3) Carbonic acid
  - (4) Bicarbonate







