Introduction to Protein Folding

Chapter 4 Proteins: Three Dimensional Structure and Function

- **Conformation** - three dimensional shape
- **Native conformation** - each protein folds into a single stable shape (physiological conditions)
- Biological function of a protein depends completely on its native conformation
- A protein may be a single polypeptide chain or composed of several chains

There are Four Levels of Protein Structure

1. Formation of Primary Structure
2. Formation of Secondary Structure
3. Formation of Tertiary Structure
4. Formation of Quaternary Structure
How many AA sequences are there for a typical protein 100 AA long?

\[20^{100}\]

The Conformation of the Peptide Group

- The peptide group consists of 6 atoms (next slide)
- Peptide bonds have some double bond properties so that their conformation is restricted to either trans or cis
- Cis conformation is less favorable than trans due to steric interference of α-carbon side chains
- Cis-trans isomerases can catalyze the interconversion of cis and trans conformations

How Do the Amino Acids Connect to One Another?
Once We Have a Long Polypeptide, Then What?

Form Secondary Structures

Methods for Determining Protein Structure

- X-ray crystallography is used to determine the three-dimensional conformation of proteins

http://www.eserc.stonybrook.edu/ProjectJava/Bragg/

http://epswww.unm.edu/xrd/xdbasics.pdf
Linus Pauling and collaborators used X-ray diffraction studies to postulate several principles that a structure must obey.

1. The bond lengths and bonds angles should be distorted as little as possible.
2. No two atoms should approach one another more closely than is allowed by their van der Waal radii.
3. The amide group must remain planar and in the trans configuration. This allows only rotation about the two bonds adjacent to the α-carbon.
4. Some kind of noncovalent bonding is necessary to stabilize a regular folding.

Pauling and Corey’s Work

- They worked on the fibrous proteins: α-keratin (hair, wool, and skin) and β-keratin (silk and spider webs).
Pauling Studied Structures of Small Molecules Containing Amide Bonds. He found all amide bonds have same structure.

\[
\begin{align*}
\text{C} & \quad \text{O} \\
\text{N} & \quad \text{H} \\
\text{H} & \\
\end{align*}
\]

- C, O, N, H are coplanar
- C-N bond is shorter than most C-N bonds
- O and H are always trans

Rationale: partial double bond character in the C-N bond.

X-ray diffraction experiments on α and β keratin concluded:

Structural information
- Repeat distance – distance before folding pattern repeats

α-keratin = 0.55 nm
β-keratin = 1.3 nm-1.4 nm

The structure of a polypeptide chain can be described as amide bonds separated by tetrahedral carbon bonds

α C of Amino Acids
Alpha helix

Right-handed helix

Hydrogen Bond (axial)

Repeats itself in 18 residues and 5 turns

18 residues/ 5 turns =

3.6 residues/ per turn

13 atoms in the hydrogen bond loop

A Common Way to Express Other Types of Helices is Using the n_N method.

Remember $n =$ number residues per turn and $N =$ atoms in H-bond network

α-helix

3.6$_{13}$

Alpha Helix

Repeats itself in 18 residues and 5 turns

18 residues/5 turns = 3.6 residues/turn

http://www.umass.edu/molvis/thickeman/protarch/helix/menu.html
Describing the Structures

c = crystallographic repeat
p = pitch (nm/turn)
h = rise (nm/residue)
n = residues per turn
m = residues per repeat (must be an integer)
N = atoms in hydrogen bond loop

If the rise of the α-helix is 0.15 nm/residue, what is the pitch?

\[p = hn \]
\[p = 0.15 \text{ nm/residue} \times 3.6 \text{ residues/turn} \]
\[p = 0.54 \text{ nm/turn} \]

Hydrogen Bonding Patterns for Four Helices

Tighter helices (less residues per turn)

n = 2 will not form a helix
It is very difficult to have only two residues per turn and linear hydrogen bonds between residues in the same chain.

Therefore, structures which have only two amino acids in the turn form a beta pleated sheet.

Each residue is rotated by 180° with respect to the previous.

Chains are folded in an accordion-like fashion from α-carbon to α-carbon.

Hydrogen Bond

The hydrogen bonds occur between adjacent chains.

Parallel and antiparallel β-strands

- β Strands in a sheet are parallel or antiparallel.
- Parallel β sheets - strands run in the same N- to C- terminal direction.
- Antiparallel β sheets - strands run in opposite N- to C- terminal directions.
- In antiparallel β sheets the H-bonds are nearly perpendicular to the chains (more stable than parallel chains with distorted H-bonds).
Antiparallel vs Parallel β-sheets

http://www.agrsci.ubc.ca/courses/fnh/301/protein/protein.htm

β-Sheets (a) parallel, (b) antiparallel

The Conformation of β-sheets
Loops and Turns

- Loops and turns connect a helices and β strands and allow a peptide chain to *fold back on itself* to make a compact structure
- Loops - often contain hydrophilic residues and are found on protein surfaces
- Turns - loops containing 5 residues or less
- β Turns (reverse turns) - connect different antiparallel β strands

Reverse turns

(a) Type I, and (b) Type II

What constitutes into what secondary structure the protein will fold?

1. Amino acid sequence
2. Angles of rotation about φ and ψ
Relative Probabilities of Amino Acid Residues Occurrence in Different Globular Protein Secondary Structure as predicted by P. Y. Chou and G. D. Fasman

Rotation Around the Bonds in a Polypeptide Bond

The angles of rotation about these bonds are defined as ϕ and ψ with directions defined as positive rotation with respect to the α carbon

Permissible values of ϕ and ψ

- Conformation of a polypeptide chain can be solely described by ϕ and ψ angles
- Ramachandran plots of ϕ and ψ show permissible angles for polypeptide chains
- Some ϕ and ψ angles are not allowed because of steric hindrance
- Conformations of several types of secondary structures fall within permissible areas
Now that a secondary structure has formed, what will it do?

Tertiary Structure of Proteins

- Tertiary structure results from the folding of a polypeptide chain into a closely-packed three-dimensional structure
- Amino acids far apart in the primary structure may be brought together
- Stabilized primarily by noncovalent interactions (e.g. hydrophobic effects) between side chains
- Disulfide bridges also part of tertiary structure
Supersecondary Structures (Motifs)

Motifs - recurring protein structures

(a) Helix-loop-helix	two helices connected by a turn
(b) Coiled-coil	two amphipathic α helices that interact in parallel through their hydrophobic edges
(c) Helix bundle	several α helices that associate in an antiparallel manner to form a bundle
(d) βαβ Unit	two parallel β strands linked to an intervening α helix by two loops

Supersecondary structures (cont)

(e) Hairpin	two adjacent antiparallel β strands connected by a β turn
(f) β Meander	an antiparallel sheet composed of sequential β strands connected by loops or turns
(g) Greek key	4 antiparallel strands (strands 1,2 in the middle, 3 and 4 on the outer edges)
(h) β Sandwich	stacked β strands or sheets

Common motifs

![Diagram of common motifs]
Domains

- Independently folded, compact units in proteins
- Domain size: ~25 to ~300 amino acid residues
- Domains are connected to each other by loops, bound by weak interactions between side chains
- Domains illustrate the evolutionary conservation of protein structure

Four categories of protein domains

1. **All α** - domains consist almost entirely of α helices and loops
2. **All β** - all domains contain only β sheets and non-repetitive structures that link the β strands

Protein domains (continued)

3. **Mixed α/β** - contain supersecondary structures such as the αβα motif, where regions of α helix and β strand alternate
4. **α + β** - domains consist of local clusters of α helices and β sheet in separate, contiguous regions of the polypeptide chain
Folds

- Within each of the four main structural categories, domains can be classified by characteristic “folds”
- A “fold” is a combination of secondary structures that form the core of a domain
- Some domains have simple folds, others have more complex folds

Common domain folds

What are two major factors involved in the formation of a tertiary structure?

Two Major Factors

- Thermodynamics
 - Conformational Entropy
 - Internal Hydrogen Bond
 - Electrostatic Interactions
 - Hydrophobic Effect
 - van der Waals Interaction
 - Disulfide Bonds

- Kinetics
 - Levinthal’s Paradox
Conformational Entropy

To go from \(\rightarrow \) To \(\rightarrow \) Involves a decrease in randomness (less disorder)

\[\Delta G = \Delta H - T \Delta S \]

If entropy is becoming small, then \(\Delta G \) is becoming more positive

∴ conformational entropy change works against folding

WE MUST SEEK FEATURES OF PROTEIN FOLDING THAT YIELD EITHER LARGE NEGATIVE \(\Delta H \) OR SOME OTHER INCREASE IN ENTROPY ON FOLDING

Electrostatic Interactions

Typical charge-charge interactions that favor protein folding are those between oppositely charged R-groups such as K or R and D or E.

Another component of the energy involved in protein folding is charge-dipole interactions. This refers to the interaction of ionized R-groups of amino acids with the dipole of the water molecule.
H-bonding, therefore, occurs not only within and between polypeptide chains but with the surrounding aqueous medium.

van der Waals forces are considered to be weak forces, but since a protein has such a huge number of these interactions, it plays a significant role in folding.

Attractive van der Waals-induced dipoles between adjacent atoms.

Repulsive van der Waals-electron-electron repulsion due to the electron clouds overlapping between adjacent atoms.

Amino acids in proteins contain either hydrophobic or hydrophilic side chains.

It is the nature of the interaction of the different R-groups with the aqueous environment that plays the major role in shaping protein structure.
The Hydrophobic Effect

Increasing randomness

\[\Delta S^\circ_{\text{universe}} = \Delta S^\circ_{\text{system}} + \Delta S^\circ_{\text{surroundings}} \]

Thermodynamic parameters for folding of some globular Proteins at 25 °C in aqueous solution

<table>
<thead>
<tr>
<th>Protein</th>
<th>(\Delta G) (kJ/mol)</th>
<th>(\Delta H) (kJ/mol)</th>
<th>(\Delta S) (J/K/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribonuclease</td>
<td>-46</td>
<td>-240</td>
<td>-790</td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>-55</td>
<td>-270</td>
<td>-720</td>
</tr>
<tr>
<td>Lipase</td>
<td>-62</td>
<td>-220</td>
<td>-530</td>
</tr>
<tr>
<td>Cytochrome c</td>
<td>-44</td>
<td>-52</td>
<td>-27</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>-50</td>
<td>0</td>
<td>-170</td>
</tr>
</tbody>
</table>

*Note: Data adapted from R. L. Prikhodko and N. N. Khromovskiy, J. Mol. Biol. (1974) 96:695-704. Each data set has been taken at the pH at which the protein is maximally stable and is near physiological pH. Data for the E852G variant of the protein is as follows:...

The small negative for cytochrome c and the positive value for myoglobin are a consequence for the hydrophobic effect.

Contributions to the free energy of folding of globular proteins

...
Disulfide Bonds

Once the folding has occurred, the three dimensional structure is in some cases further stabilized by the formation of disulfide bonds between cysteine residues.

Once disulfide bonds are formed, they contribute greatly to the stability of the protein.

Kinetics of Protein Folding

The folding of globular proteins from their denatured state is a rapid process, often complete in less than a second.

There are about 10^{50} different conformations for the polypeptide ribonuclease.

Let's say it tries a new conformation every 10^{-13} second, it would take about 10^{30} years to try significant fraction of them.

Yet we know that it folds in about 1 minute.

This dilemma is known as Levinthal’s Paradox.
Kinetic Diagram of Protein Folding

Energy

- 10^{16} Denatured
- Fast
- 10^{10} slow
- Semi-compact
- 10^3 Fast
- native

Quaternary Structure

- Refers to the organization of subunits in a protein with multiple subunits (an “oligomer”)
- Subunits (may be identical or different) have a defined stoichiometry and arrangement
- Subunits are held together by many weak, noncovalent interactions (hydrophobic, electrostatic)

Chaperonins or Molecular Chaperones

Chaperonins either help prevent protein misfolding or aggregation

I’ll shelter you until you completely fold

E. coli chaperonin

(a) (b) Core consists of 2 identical rings (7 GroE subunits in each ring)
(c) Protein folding takes place inside the central cavity

Molecular Chaperones

Fibrous proteins

- Provide mechanical support
- Often assembled into large cables or threads
- α-Keratins: major components of hair and nails
- Collagen: major component of tendons, skin, bones and teeth
Collagen, a Fibrous Protein

- Collagen is a major protein in connective tissue of vertebrates (25-35% of total protein in mammals)
- Diverse forms include tendons (ropelike fibers) and skin (loosely woven fibers)
- Collagen consists of three left-handed helical chains coiled around each other in a right-handed supercoil
- Three amino acids per turn, rise 0.31 nm per residue (collagen is more extended than an α helix)

Stereo view of human Type III collagen triple helix

Collagen triple helix

- Multiple repeats of -Gly-X-Y- where X is often proline and Y is often 4-hydroxyproline
- Glycine residues are located along central axis of a triple helix (other residues cannot fit)
- For each -Gly-X-Y- triplet, one interchain H bond forms between amide H of Gly in one chain and -C=O of residue X in an adjacent chain
- No intrachain H bonds exist in the collagen helix
4-Hydroxyproline and 5-hydroxylysine

- Formed by enzyme hydroxylation reactions (require vitamin C) after incorporation into collagen
- Vitamin C deficiency (scurvy) leads to lack of proper hydroxylation and defective triple helix (skin lesions, fragile blood vessels, bleeding gums)
- Unlike most mammals, humans cannot synthesize vitamin C

Interchain H bonding in collagen

- Amide H of Gly in one chain is H-bonded to C=O in another chain

4-Hydroxyproline

5-Hydroxylysine
Globular proteins

- Usually water soluble, compact, roughly spherical
- Hydrophobic interior, hydrophilic surface
- Globular proteins include enzymes, carrier and regulatory proteins

Structures of Myoglobin and Hemoglobin

- **Myoglobin (Mb)** - monomeric protein that facilitates the diffusion of oxygen in vertebrates
- **Hemoglobin (Hb)** - tetrameric protein that carries oxygen in the blood
- **Heme** consists of a tetrapyrrole ring system called *protoporphyrin IX* complexed with iron
- Heme of Mb and Hb binds oxygen for transport
Heme Fe(II)-protoporphyrin IX

- Porphyrin ring provides four of the six ligands surrounding iron atom

Protein component of Mb and Hb is globin

- Myoglobin is composed of 8 α helices
- Heme prosthetic group binds oxygen
- His-93 is complexed to the iron atom, and His-64 forms a hydrogen bond with oxygen
- Interior of Mb almost all hydrophobic amino acids
- Heme occupies a hydrophobic cleft formed by three α helices and two loops

Sperm whale oxymyoglobin

- Oxygen (red)
- His-93 and His-64 (green)
Hemoglobin (Hb)

- Hb is an $\alpha_2\beta_2$ tetramer (2 α globin subunits, 2 β globin subunits)
- Each globin subunit is similar in structure to myoglobin
- Each subunit has a heme group
- The α chain has 7 α helices, β chain has 8 α helices

Hemoglobin tetramer

(a) Human oxyhemoglobin (b) Tetramer schematic

Protein Denaturation and Renaturation

- **Denaturation** - disruption of native conformation of a protein, with loss of biological activity
- Energy required is small, perhaps only equivalent to 3-4 hydrogen bonds
- Proteins denatured by heating or chemicals
- Some proteins can be refolded or renatured
- Heat denaturation of ribonuclease A
- Unfolding monitored by changes in ultraviolet (blue), viscosity (red), optical rotation (green)

Denaturation and renaturation of ribonuclease A

Why Worry About Protein Misfolding or Aggregation???
Alzheimer's

What are the plaques that form that cause cell death?

They are proteins that **MISFOLD** and begin to aggregate into β-sheets.

The once small protein that usually is excreted is now too large to move through membrane and begins to kill the cells

Mad Cow Disease

The Prion Protein

Misfolds and becomes a scrapie prion

Bumps into normal folding proteins and causes them to go toward a scrapie prion