Introduction to Protein Folding

Chapter 4 Proteins: Three Dimensional Structure and Function

- Conformation three dimensional shape
- *Native conformation* each protein folds into a single stable shape (physiological conditions)
- <u>Biological function</u> of a protein depends completely on its <u>native conformation</u>
- A protein may be a single polypeptide chain or composed of several chains

How many AA sequences are there for a typical protein 100 AA long?

20100

The Conformation of the Peptide Group

- The peptide group consists of <u>6 atoms</u> (next slide)
- Peptide bonds have some <u>double bond properties</u> so that their conformation is restricted to either *trans* or *cis*
- Cis conformation is less favorable than trans due to steric interference of α -carbon side chains
- *Cis-trans* isomerases can catalyze the interconversion of *cis* and *trans* conformations

Linus Pauling and collaborators used X-ray diffraction studies to postulate several principles that a structure must obey.

- 1. The bond lengths and bonds angles should be distorted as little as possible.
- 2. No two atoms should approach one another more closely than is allowed by there van der Waal radii.
- The amide group must remain planar and in the *trans* configuration. This allows only rotation about the two bonds adjacent to the α-carbon.
- 4. Some kind of noncovalent bonding is necessary to stabilize a regular folding.

X-ray diffraction experiments on α and β keratin concluded:

Structural information

• Repeat distance – distance before folding pattern repeats

$$\label{eq:a-keratin} \begin{split} \alpha\text{-keratin} &= 0.55 \text{ nm} \\ \beta\text{-keratin} &= 1.3 \text{ nm-}1.4 \text{ nm} \end{split}$$

The structure of a polypeptide chain can be described as amide bonds separated by tetrahedral carbon bonds

a C of Amino Acids

A Common Way to Express Other Types of Helices is Using the n_N method.

 $\label{eq:Remember n = number residues per turn and} \\ N = atoms in H-bond network$

α-helix

3.6₁₃

Describing the Structures

- c = crystallographic repeat
- p = pitch (nm/turn)
- h = rise (nm/residue)
- $n = residues \ per \ turn$
- m = residues per repeat (must be an integer)
- N= atoms in hydrogen bond loop

Parallel and antiparallel β -stands

- β Strands in a sheet are <u>parallel</u> or <u>antiparallel</u>
- Parallel β sheets strands run in the same N- to C- terminal direction
- Antiparallel β sheets strands run in <code>opposite</code> N- to C- terminal directions
- In antiparallel β sheets the H-bonds are nearly perpendicular to the chains (more stable than parallel chains with distorted H-bonds)

Loops and Turns

- Loops and turns connect a helices and β strands and allow a peptide chain to <u>fold back on</u> <u>itself</u> to make a compact structure
- **Loops** often contain hydrophilic residues and are found on protein surfaces
- Turns loops containing 5 residues or less
- **β Turns** (reverse turns) connect different antiparallel β strands

What constitutes into what secondary structure the protein will fold?

- 1. Amino acid sequence
- 2. Angles of rotation about ϕ and ψ

 Relative Probabilities of Amino
 Addressed and the second and the s

unino Acid	α Helix (P_{α})	β Shret (Pp)	Tarm (P ₄)
da .	1.29	0.90	0.78 }
35	1.11	0.74	0.80
eu .	1.30	1.02	0.59
det	1.47	0.97	0.39 Environhelion
alu -	1.44	0.75	1.00 Fever et beuces
In	1.27	0.80	0.97
tis	1.22	1.08	0.69
35	1.23	0.77	0.96
54	0.91	1.02	0.47)
le .	0.97	1.45	0.51
he	1.07	1.32	0.54
lor .	0.72	1.25	1.05 Favor & shorts
ip .	0.99	1.14	0.75
ĥr	0.82	1.21	1.03
δy	0.56	0.92	1.64]
er	0.82	0.95	1.33
WD.	1.04	0.72	1.41 Fevor tarns
1628	0.90	0.76	1.23
30	0.52	0.64	1.91
l/g	0.96	0,99	0.88
a	n rules for predictio		
	n of six residues o 1g Pro, is predicte		\geq 1.00, as well as $\langle P_{\alpha} \rangle > \langle P_{\beta} \rangle$, and
Any segment predicted to		or more, with (Pg	\geq 1.05, and $\langle P_{g} \rangle > \langle P_{m} \rangle$, is
		and the second second	P_{μ} $\rangle < 0.9$, $\langle P_{\lambda} \rangle > \langle P_{\lambda} \rangle$. They have a
			$P_{ib} > 0.9$, $(P_b) > (P_g)$. They have a c predicting β turns are more
	it this method will		
ta adapted from			

Permissible values of ϕ and ψ

- Conformation of a polypeptide chain can be <u>solely</u> <u>described</u> by ϕ and ψ angles
- Ramachandran plots of ϕ and ψ show permissible angles for polypeptide chains
- Some ϕ and ψ angles are not allowed because of steric hindrance
- Conformations of several types of secondary structures fall within permissible areas

Tertiary Structure of Proteins

- Tertiary structure results from the folding of a polypeptide chain into a closely-packed threedimensional structure
- Amino acids far apart in the primary structure may be brought together
- Stabilized primarily by noncovalent interactions (e.g. hydrophobic effects) between side chains
- Disulfide bridges also part of tertiary structure

Supersecondary Structures (Motifs)

Motifs - recurring protein structures

- (a) Helix-loop-helix two helices connected by a turn
- (b) Coiled-coil two amphipathic α helices that interact in <u>parallel</u> through their hydrophobic edges
- (c) Helix bundle several α helices that associate in an <u>antiparallel</u> manner to form a bundle
- (d) $\beta \alpha \beta$ Unit two parallel β strands linked to an intervening α helix by two loops

Supersecondary structures (cont)

- (e) **Hairpin** two adjacent antiparallel β strands connected by a β turn
- (f) β Meander an antiparallel sheet composed of sequential β strands connected by loops or turns
- (g) **Greek key** 4 antiparallel strands (strands 1,2 in the middle, 3 and 4 on the outer edges)
- (h) **\beta** Sandwich stacked β strands or sheets

13

Domains

- Independently folded, compact units in proteins
- Domain size: ~25 to ~300 amino acid residues
- Domains are connected to each other by loops, bound by weak interactions between side chains
- Domains illustrate the evolutionary conservation of protein structure

Four categories of protein domains

- (1) All α domains consist almost entirely of α helices and loops
- (2) All β all domains contain only β sheets and non-repetitive structures that link the β strands

Protein domains (continued)

- (3) **Mixed** α/β contain supersecondary structures such as the $\alpha\beta\alpha$ motif, where regions of α helix and β strand alternate
- (4) $\alpha + \beta$ domains consist of local clusters of α helices and β sheet in separate, contiguous regions of the polypeptide chain

Folds

- Within each of the four main structural categories, domains can be classified by characteristic "folds"
- A "fold" is a combination of secondary structures that form the core of a domain
- Some domains have simple folds, others have more complex folds

Typical charge-charge interactions that favor protein folding are those between oppositely charged R-groups such as K or R and D or E.

Another component of the energy involved in protein folding is charge-dipole interactions.

This refers to the interaction of ionized R-groups of amino acids with the dipole of the water molecule.

van der Waals Forces in Proteins

van der Waal forces are considered to be weak forces, but since a protein has such a huge number of these interactions, it plays a significant role in folding

<u>Attractive</u> van der Waalsinduced dipoles between adjacent atoms

<u>Repulsive</u> van der Waalselectron-electron repulsion due to the electron clouds overlapping between adjacent atoms

Protein	ΔG (kJ/mol)	ΔH (kJ/mol)	ΔS (J/K·mol)
Ribonuclease	-46	-280	-790
Chymotrypsin	-55	-270	-720
Lysozyme	-62	-220	-530
Cytochrome c	-44	-52	-27
Myoglobin	-50	0	+170
	n taken at the pF	I value where t	Khechinashvili, J. Mol. Biol. (1974) 86:665–68- he protein is maximally stable; all are near physi ured native.

 Kinetics of Protein Folding

 The folding of globular proteins from their denatured state is a rapid process, often complete in less that a second

 There are about 10⁵⁰ different conformations for the polypeptide ribonuclease

 Let's say it tries a new conformation every 10⁻¹³ second, it would take about 10³⁰ years to try significant fraction of them

 Vet we know that is folds in about 1 minute???????

Quaternary Structure

- Refers to the <u>organization of subunits</u> in a protein with <u>multiple</u> subunits (an "oligomer")
- Subunits (may be identical or different) have a defined stoichiometry and arrangement
- Subunits are held together by many weak, noncovalent interactions (hydrophobic, electrostatic)

Molecular Chaperones

33Å

Fibrous proteins

• Provide mechanical support

140 Å - 80 Å 10 Å

- Often assembled into large <u>cables</u> or <u>threads</u>
- α-Keratins: major components of hair and nails
- **Collagen**: major component of tendons, skin, bones and teeth

Collagen, a Fibrous Protein

- Collagen is a major protein in connective tissue of vertebrates (25-35% of total protein in mammals)
- Diverse forms include tendons (ropelike fibers) and skin (loosely woven fibers)
- Collagen consists of three left-handed helical chains coiled around each other in a right-handed supercoil
- Three amino acids per turn, rise 0.31 nm per residue (collagen is more extended than an a helix)

Collagen triple helix

- Multiple repeats of -Gly-X-Y- where X is often proline and Y is often 4-hydroxyproline
- Glycine residues are located along <u>central axis</u> of a triple helix (other residues cannot fit)
- For each -Gly-X-Y- triplet, one <u>interchain</u> H bond forms between amide H of Gly in one chain and -C=O of residue X in an adjacent chain
- No intrachain H bonds exist in the collagen helix

4-Hydroxyproline and 5hydroxylysine

- Formed by enzyme hydroxylation reactions (require vitamin C) <u>after</u> incorporation into collagen
- Vitamin C deficiency (scurvy) leads to lack of proper hydroxylation and defective triple helix (skin lesions, fragile blood vessels, bleeding gums)
- Unlike most mammals, humans cannot synthesize vitamin C

Globular proteins

- Usually water soluble, compact, roughly spherical
- Hydrophobic interior, hydrophilic surface
- Globular proteins include enzymes, carrier and regulatory proteins

Structures of Myoglobin and Hemoglobin

- **Myoglobin** (**Mb**) <u>monomeric protein</u> that facilitates the diffusion of oxygen in vertebrates
- **Hemoglobin** (**Hb**) <u>tetrameric protein</u> that carries oxygen in the blood
- Heme consists of a tetrapyrrole ring system called **protoporphyrin IX** complexed with iron
- Heme of Mb and Hb binds oxygen for transport

Heme Fe(II)-protoporphyrin IX

Protein component of Mb and Hb is globin

- \bullet Myoglobin is composed of 8 α helices
- Heme prosthetic group binds oxygen
- **His-93** is complexed to the iron atom, and **His-64** forms a hydrogen bond with oxygen
- Interior of Mb almost all hydrophobic amino acids
- Heme occupies a hydrophobic cleft formed by three a helices and two loops

Hemoglobin (Hb)

- Hb is an $\alpha_2 \beta_2$ tetramer (2 α globin subunits, 2 β globin subunits)
- Each globin subunit is similar in structure to myoglobin
- Each subunit has a heme group
- The α chain has 7 α helices, β chain has 8 α helices

Protein Denaturation and Renaturation

- **Denaturation** disruption of native conformation of a protein, with loss of biological activity
- Energy required is small, perhaps only equivalent to 3-4 hydrogen bonds
- Proteins denatured by heating or chemicals
- Some proteins can be refolded or renatured

Why Worry About Protein Misfolding or Aggregation????

<u>Alzheimer's</u>

What are the plaques that form that cause cell death?

They are proteins that $\underline{\text{MISFOLD}}$ and begin to aggregate into β -sheets.

The once small protein that usually is excreted is now too large to move through membrane and begins to kill the cells

