

Table 14.1

 TABLE 14.1
 Characteristics of protein complexes of the mitochondrial respiratory electron-transport chain in bovine heart

Complex	Subunits	Molecular weight	Oxidation-reduction components	
I. NADH-ubiquinone oxidoreductase	42 or 43	> 900 000	1 FMN 22–24 Fe–S in 7 or 8 clusters	
II. Succinate-ubiquinone oxidoreductase	4	125 000	1 FAD 3 Fe–S clusters Cytochrome b_{560}	
III. Ubiquinol–cytochrome c oxidoreductase	2	~250 000 (dimer of 11-chain subunits)	1 Fe–S cluster Cytochrome b Cytochrome c_1	
IV. Cytochrome <i>c</i> oxidase	2	420 000 (dimer of 13-chain subunits)	Cytochrome a Cytochrome a_3 2 Copper ions	
Prentice Hall c2002	Chapter 14		21	

Table 14.3							
TABLE 14.3Standard free energy released in the oxidation reactioncatalyzed by each complex							
Complex	$E_{ m reductant}^{\circ\prime}$ (V)	$E_{ m oxidant}^{\circ\prime} \ m (V)$	$\Delta E^{\circ' a}$ (V)	$\Delta G^{\circ \prime b}$ (kJ mol ⁻¹)	$\Delta G^{\circ \prime}$ (kcal mol ⁻¹)		
I (NADH/Q)	-0.32	+0.04	+0.36	-70	-17		
II (Succinate/Q)	+0.03	+0.04	+0.01	- 2	- 0.5		
III (QH ₂ /Cytochrome c)	+0.04	+0.23	+0.19	-37	- 9		
IV (Cytochrome c/O ₂)	+0.23	+0.82	+0.59	-110	_		
${}^{a}\Delta E^{\circ'}$ was calculated as the difference between $E^{\circ'}_{\text{reductant}}$ and $E^{\circ'}_{\text{oxidant}}$. ^b The standard free energy obtained by the oxidation of one mole of NADH or the electrons derived from NADH was calculated using Equation 14.19, where $n = 2$ electrons.							
Prentice Hall c2002		Chapter	14		25		

