Chapter 19 Nucleic Acids

- Nucleic acids represent the fourth major class of biomolecules (other major classes of biomolecules are proteins, carbohydrates, fats)
- **Genome** the genetic information of an organism

Information specifying protein structure

- Transcription copying of the DNA sequence information into RNA
- **Translation** Information in RNA molecules is translated during polypeptide chain synthesis
- Information flow:
- DNA ⇒ RNA ⇒ PROTEIN

19.1 Nucleotides Are the Building Blocks of Nucleic Acids

- Nucleic acids are polynucleotides
- Nucleotides have three components:
 - (1) A five-carbon sugar
 - (2) A weakly basic nitrogen base
 - (3) Phosphate
- Nucleotides are phosphate esters of nucleosides

Fig 19.1 Chemical structure of a nucleotide

$$\bigcirc O - P - O - CH_2 \qquad Base$$

$$\bigcirc O \qquad \qquad H \qquad H \qquad H$$

$$OH \qquad H$$

D. Nucleotides

- Nucleotides are phosphorylated derivatives of nucleosides
- Ribonucleosides contain three potential hydroxyl groups (2', 3' and 5')
- Deoxyribonucleosides can be phosphorylated at the 3' and 5' positions
- A nucleotide is assumed to be <u>5'-phosphate</u> unless specified otherwise

TABLE 19.1	Nomenclature of bases, nucleosides, and nucleotides			
Base	Ribonucleoside	Ribonucleotide (5'-monophosphate)		
Adenine (A)	Adenosine	Adenosine 5'-monophosphate (AMP); adenylate		
Guanine (G)	Guanosine	Guanosine 5'-monophosphate (GMP); guanylate		
Cytosine (C)	Cytidine	Cytidine 5'-monophosphate (CMP); cytidylate ^a		
Uracil (U)	Uridine	Uridine 5'-monophosphate (UMP); uridylate ^a		
Base	Deoxyribonucleoside	Deoxyribonucleotide (5'-monophosphate)		
Adenine (A)	Deoxyadenosine	Deoxyadenosine 5'-monophosphate (dAMP); deoxyadenylate ^a		
Guanine (G)	Deoxyguanosine	Deoxyguanosine 5'-monophosphate (dGMP); deoxyguanylate ^a		
Cytosine (C)	Deoxycytidine	Deoxycytidine 5'-monophosphate (dCMP); deoxycytidylate ^a		
Thymine (T)	Deoxythymidine or thymidine	Deoxythymidine 5'-monophosphate (dTMP); deoxythymidylate ^a or thymidylate ^a		

Draw the Following Nucleotides

- GDP
- ATP

Fig 19.10 Stereo view of dGMP

 Carbon (gray), nitrogen (blue), oxygen (red), phosphorous (orange) (Hydrogens omitted)

19.2 DNA is Double-Stranded

Table 19.2

Source	A	G	c	т	A/T^a	G/C^a	(G+C)	Purine/ pyrimidine
Escherichia coli	26.0	24.9	25.2	23.9	1.09	0.99	50.1	1.04
Mycobacterium tuberculosis	15.1	34.9	35.4	14.6	1.03	0.99	70.3	1.00
Yeast	31.7	18.3	17.4	32.6	0.97	1.05	35.7	1.00
Cow	29.0	21.2	21.2	28.7	1.01	1.00	42.4	1.01
Pig .	29.8	20.7	20.7	29.1	1.02	1.00	41.4	1.01
Human	30.4	19.9	19.9	30.1	1.01	1.00	39.8	1.01

B. Two Antiparallel Strands Form a Double Helix

- Figure 19.12 (next slide)
- Two strands run in opposite directions
- Bases in opposite strands pair by complementary hydrogen bonding
- Adenine (A) Thymine (T)
- Guanine (G) Cytosine (C)

Three dimensional structure of DNA

- A double helix has two grooves of unequal width: **major groove** and **minor groove**
- Within each groove base pairs are exposed and are accessible to interactions with other molecules
- DNA-binding proteins can use these interactions to "read" a specific sequence

Stereo view of B-DNA

B-DNA is a <u>right-handed</u> <u>helix</u>, diam. = 2.37nm

- Rise (distance between stacked bases) =0.33nm
- Pitch (distance to complete one turn) = 3.40 nm
- Base pairs nearly perpendicular to sugarphosphate backbones
- Figure 19.15 Stereo views of B-DNA (next slide)

C. Weak Forces Stabilize the Double Helix

- (1) *Hydrophobic effects*. Burying purine and pyrimidine rings in the double helix interior
- (2) Stacking interactions. Stacked base pairs form van der Waals contacts

(continued next slide)

Weak forces (continued)

- (3) *Hydrogen bonds*. Hydrogen bonding between base pairs.
- (4) Charge-charge interactions. Electrostatic repulsion of negatively charged phosphate groups is decreased by cations (e.g. Mg²⁺) and cationic proteins

- Double-stranded (DS)DNA (pH 7.0), absorbance max 260nm
- Denatured DNA absorbs12% -40% more than DS DNA

Denaturation of DNA

- Double-stranded DNA is thermodynamically more stable than the separated strands (under physiological conditions)
- **Denaturation** Complete unwinding and separation of the 2 strands of DNA
- Heat or chaotropic agents (e.g. urea) can denature DNA

Heat denaturation of DNA

- $\hbox{\bf Melting point } (T_m) \hbox{\bf temperature at which} \\ \hbox{\bf 1/2 of the DNA has become single stranded}$
- Melting curves can be followed at ${\rm Abs}_{\rm 260nm}$

D. Conformations of Double-Stranded DNA

- Two alternative structures to B-DNA:
 A-DNA (forms when DNA is dehydrated)
 Z-DNA (when certain sequences are present)
- A-DNA is more tightly wound than B-DNA, and has minor grooves of similar width
- Z-DNA has no grooves and a left-handed helix
- Both A-DNA and Z-DNA exist in vivo in short regions of DNA

19.3 DNA Can Be Supercoiled

- "Relaxed" circular DNA with the B conformation (10.4 base pairs/turn) would lie flat on a surface
- If strands are broken, and two ends of linear DNA twisted in opposite directions and rejoined, DNA supercoils to restore 10.4 bp/turn
- Each supercoil compensates for one turn of the double helix

Supercoiling

- Most bacterial chromosomes are supercoiled, and regions of eukaryotic DNA are supercoiled
- Topoisomerases enzymes that can alter the topology of DNA helixes by:
- (1) Cleaving one or both DNA strands
- (2) Unwinding or overwinding the double helix by rotating the strands
- (3) Rejoining ends to create (or remove) supercoils

Fig 19.20 Human topoisomerase I bound to DNA

- Topoisomerases can add or remove supercoils in DNA
- Cleave one or both DNA strands, unwind or overwind by rotating cleaved ends, then rejoin ends

17.4 Cells Contain Several Kinds of RNA

- Ribosomal RNA (rRNA) an integral part of ribosomes, accounts for ~80% of RNA in cells
- Transfer RNA (tRNA) carry activated amino acids to ribosomes for polypeptide synthesis (small molecules 73-95 nucleotides long)

Types of RNA (continued)

- Messenger RNA (mRNA) carry sequence information to the translation complex
- Small RNA have catalytic activity or associate with proteins to enhance activity

RNA structure

- RNA's are single-stranded molecules
- Often have complex secondary structures
- Can fold to form stable regions of base-paired, double-stranded RNA
- Example is stem-loop (hairpin) structure

Fig 19.21 Stem-loop structures in RNA

- Stem-loops or hairpins can form from short regions of complementary base pairs
- Stem: base-paired nucleotides
- Loop: noncomplementary nucleotides

19.5 DNA Is Packaged in Chromatin in Eukaryotic Cells

- Chromatin DNA plus various proteins that package the DNA in a more compact form
- The packing ratio: difference between the length of the metaphase DNA chromosome and the extended B form of DNA is 8000-fold

A. Nucleosomes

- **Histones** the major proteins of chromatin
- Eukaryotes contain five small, basic histone proteins containing many lysines and arginines: H1, H2A, H2B, H3, and H4
- Positively charged histones bind to negativelycharged sugar-phosphates of DNA

Table 19.3

Туре	Molecular weight	Number of residues	Number of basic residues	Number of acidic residues
Rabbit thymus H1	21 000	213	65	10
Calf thymus H2A	14 000	129	30	9
Calf thymus H2B	13 800	125	31	10
Calf thymus H3	15 300	135	33	11
Calf thymus H4	11 300	102	27	7

Nucleosomes

- Nucleosome "beads" are DNA-histone complexes on a "string" of double-stranded DNA
- Each nucleosome is composed of:

Histone H1(1 molecule)

Histones H2A, H2B, H3, H4 (2 molecules each)

~200 bp of DNA

B. Higher Levels of Chromatin Structure

- Packaging of DNA in nucleosomes reduces DNA length ~tenfold
- DNA is packaged further by coiling of the "beads-on-a-string" into a <u>solenoid</u> structure
- Achieves another fourfold reduction in chromosome length

Solenoid model of 30nm chromatin structure

- Figure 19.25 (next slide)
- Model of the 30nm chromatin fiber shown as a solenoid or helix formed by individual nucleosomes
- Nucleosomes associate through contacts between adjacent histone H1 molecules

RNA-protein scaffolds in chromatin

- · Chromatin fibers attach to scaffolds
- Holds DNA fibers in large loops
- May be ~2000 loops on a large chromosome
- This accounts for an additional 200-fold condensation in DNA length

Fig 19.26 Histone-depleted chromosome scaffold

Protein scaffold

Loops attached to scaffold

C. Bacterial DNA Packaging

- Prokaryotic DNA also packaged with proteins in a condensed form
- No defined nucleosome-like particles
- Nucleoid structure bacterial DNA attached to a scaffold in large loops of ~100 kb

19.6 Nucleases and Hydrolysis of Nucleic Acids

- **Nucleases** hydrolyze phosphodiester bonds RNases (RNA substrates) **DNases** (DNA substrates)
- May cleave either the 3'- or the 5'- ester bond of a 3'-5' phosphodiester linkage
- Exonucleases start at the end of a chain
- Endonucleases hydrolyze sites within a chain

C. Restriction Endonucleases

- Enzymes that recognize specific DNA sequences
- Cut both strands of DNA at the binding site, producing fragments that can be degraded by exonucleases
- Host cells protect their own DNA by covalent modification of bases at the restriction site (e.g. methylation)

Restriction endonuclease properties

- Type I catalyze both the methylation of host DNA and cleavage of unmethylated DNA at a specific recognition sequence
- **Type II** cleave double-stranded DNA only, at or near an unmethylated recognition sequence
- More than 200 type I and type II are known
- Most recognize "palindromic sequences" (read the same in either direction)

Source	Enzyme ^a	Recognition sequence ^b		
Acetobacter pasteurianus	Apal	gggcc [↓] c		
Bacillus amyloliquefaciens H	Bam HI	G GATCC		
Escherichia coli R Y13	Eco RI	G⁴AÅTTC		
Escherichia coli R245	Eco RII	[↓] cċтgg		
Haemophilus aegyptius	Hae III	ee _f cc		
Haemophilus influenzae R _d	Hin dIII	å↓agctt		
Haemophilus parainfluenzae	Hpa II	c√cgg		
Klebsiella pneumoniae	KpnI	GGTAC C		
Nocardia otitidis-caviarum	Not I	GC [↓] GGCCGC		
Providenciastuartii 164	Pst I	CTGCA G		
Serratia marcescens S _b	SmaI	ccc _↑ eee		
Xanthomonasbadrii	XbaI	T [↓] CTAGA		
Xanthomonasholcicola	Xho I	c↓ g		

D. EcoR1 Binds Tightly to DNA • EcoR1 has 2 identical subunits (purple and yellow) • Bound to a fragment of DNA (strands blue and green)

19.7 Uses of Restriction Endonucleases

- Developing restriction maps (indicates specific cleavage sites in a DNA fragment)
- Map of bacteriophage $\boldsymbol{\lambda}$ showing cleavage sites of some restriction enzymes

DNA Fingerprinting

- DNA sequence can be used to identify individuals in a large population
- Highly variable regions give restriction fragments that are as unique as fingerprints

