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Chapter 12 - The Citric Acid Cycle

• The citric acid cycle (tricarboxylic acid cycle) is
amphibolic (both catabolic and anabolic) 

• The cycle is involved in the aerobic catabolism
of carbohydrates, lipids and amino acids

• Intermediates of the cycle are starting points 
for many biosynthetic reactions 

• Enzymes of the cycle are in the mitochondria 
(eukaryotes) or the cytosol of bacteria
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Energy in the citric acid cycle

• Energy of the oxidation reactions is largely 
conserved as reducing power

• Coenzymes reduced:  

NAD+ NADH

Ubiquinone (Q) Ubiquinol (QH2)
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12.1 Entry of Pyruvate into the Mitochondrion

• Fig 12.1 Pyruvate translocase transports
pyruvate into the mitochondria in symport with H+
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12.2 Conversion of Pyruvate to Acetyl CoA

• Pyruvate dehydrogenase complex (PDH 
complex) is a multienzyme complex containing:

3 enzymes + 5 coenzymes + other proteins

(+ ATP coenzyme as a regulator)

E1 = pyruvate dehydrogenase

E2 = dihydrolipoamide acetyltransferase

E3 = dihydrolipoamide dehydrogenase 
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Overall reaction of pyruvate 
dehydrogenase complex
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Table 12.1 Components of the PDH Complex
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The five steps of the PDH complex

Step 1: Catalyzed by E1
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Step 2: The second step is also catalyzed by E1
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Step 3:  E2 transfers the lipoamide-bound 
acetyl group to HS-CoA forming acetyl CoA
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Step 4:   E3  FAD group oxidizes reduced
lipoamide of E2 forming FADH2
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Step 5:  E3-FADH2 reduces NAD+ to 
regenerate E3-FAD and NADH

• The oxidation of E3-FADH2 regenerates 
the original holoenzyme completing the 
catalytic cycle

• NADH dissociates from the complex

E3-FADH2 + NAD+ E3-FAD + NADH + H+
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Fig 12.2  Reactions of the PDH complex
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Roles of the coenzymes of the PDH complex

• NAD+ and HS-CoA are cosubstrates

• TPP, lipoamide and FAD are prosthetic groups

• ATP is a regulator of the PDH complex

• Lipoamide (on E2) acts as a “swinging arm” to 
transfer the two carbon unit from the active site 
of E1 to the active site of E3 (substrate
channeling) 
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Fig 12.3

• Structure of the PDH 
complex

• (a) Core of the complex 
(24 E2 chains)

• (b) Model of the entire 
complex: 12 E1 dimers
(blue), 6 E3 dimers (green) 
surround the core 
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12.3 The Citric Acid Cycle 
Oxidizes AcetylCoA

• Table 12.2
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Summary of the citric acid cycle

• For each acetyl CoA which enters the cycle: 

(1)  Two molecules of CO2 are released

(2)  Coenzymes NAD+ and Q are reduced 

(3)  One GDP (or ADP) is phosphorylated

(4)  The initial acceptor molecule 
(oxaloacetate) is reformed
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Fig 12.4

• Citric acid cycle 
(Four slides)
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Fig 12.4 
(continued)
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Fig 12.4 
(continued) 
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Fig 12.4 
(continued) 
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Fig 12.5

• Fates of carbon 
atoms in the cycle

• Carbon atoms from 
acetyl CoA (red) are 
not lost in the first 
turn of the cycle
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Fig 12.6  Energy conservation by the cycle

• Energy is conserved 
in the reduced 
coenzymes NADH, 
QH2 and one GTP

• NADH, QH2 can be 
oxidized to produce 
ATP by oxidative
phosphorylation
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12.4 The Citric Acid Cycle Can 
Be a Multistep Catalyst

• Oxaloacetate is regenerated

• The cycle is a mechanism for oxidizing acetyl
CoA to CO2 by NAD+ and Q 

• The cycle itself is not a pathway for a net
degradation of any cycle intermediates

• Cycle intermediates can be shared with other 
pathways, which may lead to a resupply or net 
decrease in cycle intermediates 
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1.  Citrate Synthase

• Citrate formed from acetyl CoA and oxaloacetate

• Only cycle reaction with C-C bond formation
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Fig 12.7  Proposed mechanism 
of citrate synthase
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Fig 12.8  Stereo views of citrate synthase

(a) Open 
conformation

(b) Closed 
conformation 

Product citrate 
(red) 
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2.  Aconitase

• Elimination of H2O from citrate to form C=C 
bond of cis-aconitate

• Stereospecific addition of H2O to cis-aconitate
to form 2R,3S-Isocitrate
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Reaction of Aconitase
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Box 12.1  Three point attachment of
prochiral substrates to enzymes

• Chemically identical groups a1 and a2 of a prochiral
molecule can be distinguished by the enzyme
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Glycerol kinase converts prochiral substrate 
(glycerol) into a chiral product (L-glycerol 3-

phosphate)
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3. Isocitrate Dehydrogenase

• Oxidative decarboxylation of isocitrate to
α-ketoglutarate (α-kg) (a metabolically irreversible 
reaction)

• One of four oxidation-reduction reactions of the cycle

• Hydride ion from the C-2 of isocitrate is transferred to 
NAD+ to form NADH

• Oxalosuccinate is decarboxylated to α-kg
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Isocitrate dehydrogenase reaction
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4.  The α-Ketoglutarate Dehydrogenase Complex
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Structure of α-Ketoglutarate 
dehydrogenase complex

• Similar to pyruvate dehydrogenase complex

• Same coenzymes, identical mechanisms

E1 - α-ketoglutarate dehydrogenase (with TPP)

E2 - succinyltransferase (with flexible lipoamide
prosthetic group) 

E3 - dihydrolipoamide dehydrogenase (with FAD)
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5. Succinyl-CoA Synthetase

• Free energy in thioester bond of succinyl CoA
is conserved as GTP (or ATP in plants, some 
bacteria)
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Fig 12.9

• Mechanism of
succinyl-CoA 
synthetase (continued 
on next slide) 
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Fig 12.9 (continued)
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6.  The Succinate Dehydrogenase (SDH) Complex

• Located on the inner mitochondrial membrane 
(other components are dissolved in the matrix)

• Dehydrogenation is stereospecific; only the 
trans isomer is formed

• Substrate analog malonate is a competitive 
inhibitor of the SDH complex  
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Reaction of the succinate 
dehydrogenase complex
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Fig 12.10 Succinate and malonate

• Malonate is a 
structural analog of
succinate 

• Malonate binds to 
the enzyme active 
site, and is a 
competitive inhibitor
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Structure of the SDH complex

• Complex of several polypeptides, an FAD 
prosthetic group and iron-sulfur clusters

• Electrons are transferred from succinate to
ubiquinone (Q), a lipid-soluble mobile carrier of 
reducing power

• FADH2 generated is reoxidized by Q

• QH2 is released as a mobile product  
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7. Fumarase

• Stereospecific trans addition of water to the 
double bond of fumarate to form L-malate 
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8. Malate Dehydrogenase
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12.5 Reduced Coenzymes Fuel the 
Production of ATP

• Each acetyl CoA entering the cycle nets:
(1) 3 NADH
(2)  1 QH2

(3)  1 GTP (or 1 ATP)

• Oxidation of each NADH yields 2.5 ATP

• Oxidation of each QH2 yields 1.5 ATP

• Complete oxidation of 1 acetyl CoA = 10 ATP
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Fig 12.11  Glucose degradation via glycolysis, 
citric acid cycle, and oxidative phosphorylation

Prentice Hall c2002 Chapter 12 46

NADH fate in anaerobic glycolysis

Anaerobic glycolysis

• NADH produced by G3PDH reaction is reoxidized
to NAD+ in the pyruvate to lactate reaction

• NAD+ recycling allows G3PDH reaction (and
glycolysis) to continue anaerobically
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NADH fate in aerobic glycolysis

• Glycolytic NADH is not reoxidized via pyruvate
reduction but is available to fuel ATP formation

• Glycolytic NADH (cytosol) must be transferred 
to mitochondria (electron transport chain 
location)

• Two NADH shuttles are available (next slide)
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NADH shuttles

• Malate-aspartate shuttle (most common) 

One cytosolic NADH yields ~ 2.5 ATP
(total 32 ATP/glucose)

• Glycerol phosphate shuttle

One cytosolic NADH yields ~1.5ATP
(total 30 ATP/glucose)
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12.6 Regulation of the Citric Acid Cycle

• Pathway controlled by:

(1) Allosteric modulators

(2) Covalent modification of cycle enzymes

(3) Supply of acetyl CoA 

(4) Regulation of pyruvate dehydrogenase 
complex controls acetyl CoA supply 
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Fig 12.12 Regulation of the PDH complex

• Increased levels of acetyl CoA and 
NADH inhibit E2, E3 in mammals and E. coli
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Fig 12.13  Regulation of mammalian PDH 
complex by covalent modification

• Phosphorylation/dephosphorylation of E1
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Further regulation of the PDH complex

Pyruvate dehydrogenase kinase (PDK)

• PDK is activated by NADH and acetyl CoA
(leads to inactivation of the PDH complex)

• PDK is inhibited by pyruvate and ADP (leads to 
activation of the PDH complex)

Pyruvate dehydrogenase phosphatase (PDP)

• PDP activity is stimulated by Ca2+ (leads to an 
activation of the PDH complex) 
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Regulation of isocitrate 
dehydrogenase (ICDH)

Mammalian ICDH

• Allosteric effectors: (+) Ca2+, ADP, (-) NADH 
(not subject to covalent modification)

E. coli ICDH

• Bifunctional kinase/phosphatase enzyme
phosphorylates/dephosphorylates ICDH

• Bifunctional enzyme is reciprocally regulated by 
intermediates of glycolytic and citric acid cycles
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Fig 12.14  E. coli ICDH models

(a) Phosphorylated form inactive, (b) Active form 
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Fig 12.15  Covalent regulation of  E. coli ICDH
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Fig 12.16  Regulation of the PDH complex 
and the citric acid cycle

(continued next slide)
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Fig 12.16 (continued)

Prentice Hall c2002 Chapter 12 58

12.7 Entry and Exit of Metabolites

• Intermediates of the citric acid cycle are 
precursors for carbohydrates, lipids, amino 
acids, nucleotides and porphyrins

• Reactions feeding into the cycle replenish the 
pool of cycle intermediates  
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Fig 12.17  Routes leading to and from 
the citric acid cycle

(continued next slide) 
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Fig. 12.17 (continued)
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Anaplerotic reactions

• Anaplerotic (filling up) reactions replenish
citric acid cycle intermediates

• Pyruvate carboxylase is a major
anaplerotic reaction in mammalian tissues

Pyruvate + CO2 + ATP + H2O

Oxaloacetate + ADP + Pi
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Phosphoenolpyruvate carboxylase

• Anaplerotic reaction in plants and bacteria

• Supplies oxaloacetate to the citric acid cycle 

Phosphoenolpyruvate + HCO3
-

Oxaloacetate + Pi
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12.8  The Glyoxylate Cycle

• Pathway for the formation of glucose from
noncarbohydrate precursors in plants, bacteria
and yeast (not animals)

• Glyoxylate cycle leads from 2-carbon 
compounds to glucose

• In animals, acetyl CoA is not a carbon source for 
the net formation of glucose (2 carbons of acetyl
CoA enter cycle, 2 are released as 2 CO2) 
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Glyoxylate cycle - formation of glucose

• Formation of glucose from acetyl CoA (or any 
substrate that is a precursor to acetyl CoA)

• Ethanol or acetate can be metabolized to 
acetyl CoA and then to glucose via the
glyoxylate cycle

• Stored seed oils in plants are converted to 
carbohydrates during germination
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Fig 12.18

Glyoxylate
Cycle 
(2 slides)
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Fig 12.18 
(cont)



34

Prentice Hall c2002 Chapter 12 67

Fig 12.19 Isocitrate lyase: first bypass 
enzyme of glyoxylate
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Fig 12.20 Malate synthase:  second 
bypass enzyme of glyoxylate
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Glyoxylate cycle in germinating castor beans

• Figure 12.21 (next slide)

• Conversion of acetyl CoA to glucose 
requires the transfer of metabolites among 
three metabolic compartments

(1) The glyoxysome
(2) The cytosol
(3) The mitochondrion 
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