Introduction to Protein Folding

Chapter 4 Proteins: Three Dimensional Structure and Function

- Conformation three dimensional shape
- *Native conformation* each protein folds into a single stable shape (physiological conditions)
- <u>Biological function</u> of a protein depends completely on its <u>native conformation</u>
- A protein may be a single polypeptide chain or composed of several chains

The Conformation of the Peptide Group

- The <u>peptide group</u> consists of <u>6 atoms</u> (next slide)
- Peptide bonds have some <u>double bond properties</u> so that their conformation is restricted to either *trans* or *cis*
- Cis conformation is less favorable than trans due to steric interference of α -carbon side chains
- *Cis-trans* isomerases can catalyze the interconversion of *cis* and *trans* conformations

Linus Pauling and collaborators used X-ray diffraction studies to postulate several principles that a structure must obey.

- 1. The bond lengths and bonds angles should be distorted as little as possible.
- 2. No two atoms should approach one another more closely than is allowed by there van der Waal radii.
- 3. The amide group must remain planar and in the *trans* configuration. This allows only rotation about the two bonds adjacent to the α -carbon.
- 4. Some kind of noncovalent bonding is necessary to stabilize a regular folding.

 α C of Amino Acids

http://www.youtube.com/watch?v=yh9Cr5n21EE

A Common Way to Express Other Types of Helices is Using the n_N Method.

Remember n = number residues per turn and N = atoms in H-bond network

α-helix

3.6₁₃

Loops and Turns

- Loops and turns connect α helices and β strands and allow a peptide chain to <u>fold back on</u> <u>itself</u> to make a compact structure
- **Loops** often contain hydrophilic residues and are found on protein surfaces
- Turns loops containing 5 residues or less
- **β Turns** (**reverse turns**) connect different antiparallel β strands

What constitutes into what secondary structure the protein will fold?

- 1. Amino acid sequence
- 2. Angles of rotation about ϕ and ψ

1. Any segment of six residues or more, with $\langle P_{\alpha} \rangle \geq 1.03$, as well as $\langle P_{\alpha} \rangle \geq \langle P_{\beta} \rangle$, and not including Pro, is predicted to be α helix. 2. Any segment of five residues or more, with $\langle P_{\beta} \rangle \geq 1.05$, and $\langle P_{\beta} \rangle > \langle P_{\alpha} \rangle$, is predicted to be β sheet. 3. Examine the sequence for tetrapeptides with $\langle P_{\alpha} \rangle < 0.9$, $\langle P_{\alpha} \rangle > \langle P_{\beta} \rangle$. They have a good chance of being turns. The actual rules for predicting β turns are more complex, but this method will work in most cases.

Turn (P_t)

0.78 0.80 0.59

0,39

1.00 0.97 0.69 0.96

0.47 0.51 0.58 1.05 0.75 1.03

1.64 1.33 1.41 1.23 1.91

0.88

Favor α helices

Favor β sheets

Favor turns

Supersecondary Structures (Motifs)

Motifs - recurring protein structures

- (a) Helix-loop-helix two helices connected by a turn
- (b) **Coiled-coil** two amphipathic α helices that interact in <u>parallel</u> through their hydrophobic edges
- (c) Helix bundle several α helices that associate in an <u>antiparallel</u> manner to form a bundle
- (d) $\beta \alpha \beta$ Unit two parallel β strands linked to an intervening α helix by two loops

Four categories of protein domains

- (1) All α domains consist almost entirely of α helices and loops
- (2) All β all domains contain only β sheets and non-repetitive structures that link the β strands

Protein domains (continued)

- (3) Mixed α/β contain supersecondary structures such as the $\alpha\beta\alpha$ motif, where regions of α helix and β strand alternate
- (4) $\alpha + \beta$ domains consist of local clusters of α helices and β sheet in separate, contiguous regions of the polypeptide chain

Folds

- Within each of the four main structural categories, domains can be classified by characteristic "**folds**"
- A "fold" is a combination of secondary structures that form the core of a domain
- Some domains have simple folds, others have more complex folds

Electrostatic Interactions

Typical charge-charge interactions that favor protein folding are those between oppositely charged R-groups such as K or R and D or E.

Another component of the energy involved in protein folding is charge-dipole interactions. This refers to the interaction of ionized R-groups of amino acids with the dipole of the water molecule.

Thermodynamic parameters for folding of some globular Proteins at 25 °C in aqueous solution

Protein	∆G (kJ/mol)	ΔH (kJ/mol)	(J/K·mol)
Ribonuclease	-46	-280	-790
Chymotrypsin	-55	-270	-720
Lysozyme	-62	-220	-530
Cytochrome c	-44	-52	-27
Myoglobin	-50	0	+170
<i>lote:</i> Data adapted fi ach data set has been logical pH. Data are	rom P. L. Prival 1 taken at the pF for the folding 1	ov and N. N. K I value where th reaction: Denate	hechinashvili, <i>J. Mol. Biol.</i> (1974) 86:665–684. ne protein is maximally stable; all are near physi- ured ==== native.

Fibrous proteins

- Provide mechanical support
- Often assembled into large <u>cables</u> or <u>threads</u>
- α-keratins: major components of hair and nails
- **Collagen**: major component of tendons, skin, bones and teeth

Collagen, a Fibrous Protein

- Collagen is a major protein in connective tissue of vertebrates (25-35% of total protein in mammals)
- Diverse forms include tendons (ropelike fibers) and skin (loosely woven fibers)
- Collagen consists of three left-handed helical chains coiled around each other in a right-handed supercoil
- Three amino acids per turn, rise 0.31 nm per residue (collagen is more extended than an a helix)

4-Hydroxyproline and 5hydroxylysine

- Formed by enzyme hydroxylation reactions (require vitamin C) <u>after</u> incorporation into collagen
- Vitamin C deficiency (scurvy) leads to lack of proper hydroxylation and defective triple helix (skin lesions, fragile blood vessels, bleeding gums)
- Unlike most mammals, humans cannot synthesize vitamin C

Globular proteins Usually water soluble, compact, roughly spherical Hydrophobic interior, hydrophilic surface Globular proteins include enzymes, carrier and regulatory proteins

Structures of Myoglobin and Hemoglobin

- **Myoglobin** (**Mb**) <u>monomeric protein</u> that facilitates the diffusion of oxygen in vertebrates
- **Hemoglobin** (**Hb**) <u>tetrameric protein</u> that carries oxygen in the blood
- Heme consists of a tetrapyrrole ring system called **protoporphyrin IX** complexed with iron
- Heme of Mb and Hb binds oxygen for transport

Protein component of Mb and Hb is globin

- Myoglobin is composed of 8 α helices
- Heme prosthetic group binds oxygen
- **His-93** is complexed to the iron atom, and **His-64** forms a hydrogen bond with oxygen
- Interior of Mb almost all hydrophobic amino acids
- Heme occupies a hydrophobic cleft formed by three a helices and two loops

Protein Denaturation and Renaturation

- **Denaturation** disruption of native conformation of a protein, with loss of biological activity
- Energy required is small, perhaps only equivalent to 3-4 hydrogen bonds
- Proteins denatured by heating or chemicals
- Some proteins can be refolded or renatured

Why Worry About Protein Misfolding or Aggregation????

Alzheimer's

What are the plaques that form that cause cell death?

They are proteins that <u>MISFOLD</u> and begin to aggregate into β-sheets.

The once small protein that usually is excreted is now too large to move through membrane and begins to kill the cells

