

19.1 Nucleotides Are the Building Blocks of Nucleic Acids

• Nucleic acids are polynucleotides

• Nucleotides have three components:

- (1) A five-carbon sugar
- (2) A weakly basic nitrogen base
- (3) Phosphate

• Nucleotides are phosphate esters of **nucleosides**

TABLE 19.1	Nomenclature of bases, nucleosides, and nucleotides		
Base	Ribonucleoside	Ribonucleotide (5'-monophosphate)	
Adenine (A)	Adenosine	Adenosine 5'-monophosphate (AMP); adenylate ^a	
Guanine (G)	Guanosine	Guanosine 5'-monophosphate (GMP); guanylate	
Cytosine (C)	Cytidine	Cytidine 5'-monophosphate (CMP); cytidylate ^a	
Uracil (U)	Uridine	Uridine 5'-monophosphate (UMP); uridylate ^a	
Base	Deoxyribonucleoside	Deoxyribonucleotide (5'-monophosphate)	
Adenine (A)	Deoxyadenosine	Deoxyadenosine 5'-monophosphate (dAMP); deoxyadenylate ^a	
Guanine (G)	Deoxyguanosine	Deoxyguanosine 5'-monophosphate (dGMP); deoxyguanylate ^a	
Cytosine (C)	Deoxycytidine	Deoxycytidine 5'-monophosphate (dCMP); deoxycytidylate ^a	
Thuming (T)	Deoxythymidine or	Deoxythymidine 5'-monophosphate (dTMP);	

19.2 DNA Is Double-Stranded

Table 19.2

Source	А	G	С	Т	A/T ^a	G/C ^a	(G + C)	Purine/ pyrimidine ^a
Escherichia coli	26.0	24.9	25.2	23.9	1.09	0.99	50.1	1.04
Mycobacterium tuberculosis	15.1	34.9	35.4	14.6	1.03	0.99	70.3	1.00
Yeast	31.7	18.3	17.4	32.6	0.97	1.05	35.7	1.00
Cow	29.0	21.2	21.2	28.7	1.01	1.00	42.4	1.01
Pig	29.8	20.7	20.7	29.1	1.02	1.00	41.4	1.01
Human	30.4	19.9	19.9	30.1	1.01	1.00	39.8	1.01

- Figure 19.12 (next slide)
- Two strands run in opposite directions
- Bases in opposite strands pair by <u>complementary hydrogen bonding</u>
- Adenine (A) Thymine (T)
- Guanine (G) Cytosine (C)

19.5 DNA Is Packaged in Chromatin in Eukaryotic Cells

- Chromatin DNA plus various proteins that package the DNA in a more compact form
- The *packing ratio:* difference between the length of the metaphase DNA chromosome and the extended B form of DNA is 8000-fold

A. Nucleosomes

- Histones the major proteins of chromatin
- Eukaryotes contain five small, basic histone proteins containing many lysines and arginines: H1, H2A, H2B, H3, and H4
- Positively charged histones bind to negativelycharged sugar-phosphates of DNA

TABLE 19.3 Basi	19.3 Basic and acidic residues in mammalian histones			
Туре	Molecular weight	Number of residues	Number of basic residues	Number of acidic residues
Rabbit thymus H1	21 000	213	65	10
Calf thymus H2A	14 000	129	30	9
Calf thymus H2B	13 800	125	31	10
Calf thymus H3	15 300	135	33	11
Calf thymus H4	11 300	102	27	7

- *Ribosomal RNA* (rRNA) an integral part of ribosomes, accounts for ~80% of RNA in cells
- Transfer RNA (tRNA) carry activated amino acids to ribosomes for polypeptide synthesis (small molecules 73-95 nucleotides long)

19.6 Nucleases and Hydrolysis of Nucleic Acids

- Nucleases hydrolyze phosphodiester bonds RNases (RNA substrates) DNases (DNA substrates)
- May cleave either the 3'- or the 5'- ester bond of a 3'-5' phosphodiester linkage
- Exonucleases start at the end of a chain
- Endonucleases hydrolyze sites within a chain

Restriction endonuclease properties

- Type I catalyze both the methylation of host DNA and cleavage of unmethylated DNA at a specific recognition sequence
- **Type II** cleave double-stranded DNA only, at or near an unmethylated recognition sequence
- More than 200 type I and type II are known
- Most recognize "palindromic sequences" (read the same in either direction)

Source	Enzyme ^a	Recognition sequence ^b	
Acetobacter pasteurianus	ApaI	GGGCC↓C	
Bacillus amyloliquefaciens H	Bam HI	G↓GATCC	
Escherichia coli R Y13	Eco RI	G↓AÅTTC	
Escherichia coli R245	Eco RII	↓сстбб	
Haemophilus aegyptius	Hae III	GG↓CC	
Haemophilus influenzae R _d	Hin dIII	Å↓AGCTT	
Haemophilus parainfluenzae	HpaII	c↓cgg	
Klebsiella pneumoniae	Kpn I	GGTAC↓C	
Nocardia otitidis-caviarum	Not I	GC↓GGCCGC	
Providenciastuartii 164	Pst I	CTGCA↓G	
Serratia marcescensS _b	Smal	ccc↓ggg	
Xanthomonasbadrii	XbaI	T↓CTAGA	
Xanthomonasholcicola	Xho I	C↓ G	

